
Mathematical Modeling

A mathematical model is a complete and consistent set of mathematical
equations used to represent a physical process.
The steps involved in a mathematical simulation of a physical process are:

1 formulation of the mathematical model,

2 scaling and simplification of the model equations,

3 solution of the mathematical equations by analytical, approximate or
numerical methods,

4 interpretation of the solution and its empirical verification.
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Definitions

Dependent variables are properties of the system that are of interest,
they can be functions of the independent variables — e.g the mass of the
system or concentration of reactant or the temperature.

The independent variables are the variables that describe the evolution
or extent of the system under investigation – e.g. time or spatial
coordinate variables.
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Classification

Ordinary Differential Equations: only one independent variable

Initial-Value: State of system is specified at some initial
time

Boundary Value Problem: State of system is specified at
system boundaries

Partial Differential Equations: more than one independent variable

Algebraic Equations: no independent variable; involve only relations
between dependent variables
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Population Growth Model — Logistic Equation

The growth pattern of a bacterial culture follows a regular pattern: there is
an initial lag phase, followed by a period of exponential growth. However,
as the population of bacteria increases, beyond a certain point, nutrients
become limiting (or waste products that limit growth increase) and the
culture enters a stationary growth phase.

One of the simplest models to describe this population growth is:

dN
dt

= rN ·
(

k−N
k

)
︸ ︷︷ ︸

fraction of carrying capacity available

N =
kN0

N0 + (k−N0)e−rt

where r is termed the reproductive parameter and k the carrying capacity
of the environment.
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Radioactive Decay

In the atmosphere and living organisms, the ratio of radioactive carbon
6C14 to ordinary carbon 6C12 is constant.

After an organism’s death, 6C14

begins to decay according to first-order kinetics, whereas the amount of
stable 6C12 remains constant. If this carbon ratio y(t) is found to be 10%
of its initial value in a fossilized bone, how old is it (half-life of 6C14 is
5,715 years)?

dy
dt

= ky

⇒ y(t) = y0ekt

⇒ t =
1
k

ln
y(t)
y0

For carbon-14: y(t1/2)/y0 = 1/2 at t = t1/2 = 5715 years

⇒ k =− ln2
5715

=−1.213×10−4year−1

Age of fossil t =−(1.213×10−4)−1 · ln0.1 = 19000 years
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Newton’s law of cooling

The rate at which the temperature of a body changes is proportional to
the difference between the temperature of the body and the temperature
of the surrounding medium (ambient temperature).

If T(t) represents the
temperature of the body at time t and Ta the ambient temperature:

dT
dt

=−k(T −Ta)

where k is a constant of proportionality

Problem: How long will it take a cup of coffee at 1850F to cool to a
drinkable temperature of 1430 F, if it’s temperature after 50 s is 181.20F,
and the ambient T is 680F.
Solution: k = 6.603×10−4 s−1 and t=674 s.

Ravi Chella Mathematical Modeling



Newton’s law of cooling

The rate at which the temperature of a body changes is proportional to
the difference between the temperature of the body and the temperature
of the surrounding medium (ambient temperature).If T(t) represents the
temperature of the body at time t and Ta the ambient temperature:

dT
dt

=−k(T −Ta)

where k is a constant of proportionality

Problem: How long will it take a cup of coffee at 1850F to cool to a
drinkable temperature of 1430 F, if it’s temperature after 50 s is 181.20F,
and the ambient T is 680F.
Solution: k = 6.603×10−4 s−1 and t=674 s.

Ravi Chella Mathematical Modeling



Newton’s law of cooling

The rate at which the temperature of a body changes is proportional to
the difference between the temperature of the body and the temperature
of the surrounding medium (ambient temperature).If T(t) represents the
temperature of the body at time t and Ta the ambient temperature:

dT
dt

=−k(T −Ta)

where k is a constant of proportionality

Problem: How long will it take a cup of coffee at 1850F to cool to a
drinkable temperature of 1430 F, if it’s temperature after 50 s is 181.20F,
and the ambient T is 680F.
Solution: k = 6.603×10−4 s−1 and t=674 s.

Ravi Chella Mathematical Modeling



Newton’s law of cooling

The rate at which the temperature of a body changes is proportional to
the difference between the temperature of the body and the temperature
of the surrounding medium (ambient temperature).If T(t) represents the
temperature of the body at time t and Ta the ambient temperature:

dT
dt

=−k(T −Ta)

where k is a constant of proportionality
Problem: How long will it take a cup of coffee at 1850F to cool to a
drinkable temperature of 1430 F, if it’s temperature after 50 s is 181.20F,
and the ambient T is 680F.
Solution: k = 6.603×10−4 s−1 and t=674 s.

Ravi Chella Mathematical Modeling



Spread of a Disease

A simple model for the rate of spread of an infectious disease is that it is
proportional to the number of encounters between infected and
non-infected people.

If y(t) is the number of infected people, and x(t) is the
number of people who have not yet been exposed, then:

dy
dt

= kxy

k is a proportionality constant that reflects the contagiousness of the
diseases and safety measures practiced.

Problem: If ten students returning from the winter break to an isolated
college of 1000 students have a flu virus, how long before half the
students have been infected, for k=10−4 day−1.
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Epidemiology Model

Problem: If ten students returning from the winter break to an isolated
college of 1000 students have a flu virus, how long before half the
students have been infected, for k=10−4 day−1.

dy
dt

= 10−4y(1000− y) y(0) = 10

⇒
∫

dt = 104
∫

dy
y(1000− y)

= 10

[∫
dy
y

+
∫

dy
1000− y

]
⇒ t = 10 ln

y
1000− y

+ c

t = 10 ln
99y

1000− y
using y(t = 0) = 10

About 46 days for 50% infection.

We will discuss later more sophisticated models :
e.g. the S(susceptible)-I(infected)-R(recovered) models, that include the
rate of recovery from the infection.

Ravi Chella Mathematical Modeling



Epidemiology Model

Problem: If ten students returning from the winter break to an isolated
college of 1000 students have a flu virus, how long before half the
students have been infected, for k=10−4 day−1.

dy
dt

= 10−4y(1000− y) y(0) = 10

⇒
∫

dt = 104
∫

dy
y(1000− y)

= 10

[∫
dy
y

+
∫

dy
1000− y

]
⇒ t = 10 ln

y
1000− y

+ c

t = 10 ln
99y

1000− y
using y(t = 0) = 10

About 46 days for 50% infection.

We will discuss later more sophisticated models :
e.g. the S(susceptible)-I(infected)-R(recovered) models, that include the
rate of recovery from the infection.

Ravi Chella Mathematical Modeling



Epidemiology Model

Problem: If ten students returning from the winter break to an isolated
college of 1000 students have a flu virus, how long before half the
students have been infected, for k=10−4 day−1.

dy
dt

= 10−4y(1000− y) y(0) = 10

⇒
∫

dt = 104
∫

dy
y(1000− y)

= 10

[∫
dy
y

+
∫

dy
1000− y

]

⇒ t = 10 ln
y

1000− y
+ c

t = 10 ln
99y

1000− y
using y(t = 0) = 10

About 46 days for 50% infection.

We will discuss later more sophisticated models :
e.g. the S(susceptible)-I(infected)-R(recovered) models, that include the
rate of recovery from the infection.

Ravi Chella Mathematical Modeling



Epidemiology Model

Problem: If ten students returning from the winter break to an isolated
college of 1000 students have a flu virus, how long before half the
students have been infected, for k=10−4 day−1.

dy
dt

= 10−4y(1000− y) y(0) = 10

⇒
∫

dt = 104
∫

dy
y(1000− y)

= 10

[∫
dy
y

+
∫

dy
1000− y

]
⇒ t = 10 ln

y
1000− y

+ c

t = 10 ln
99y

1000− y
using y(t = 0) = 10

About 46 days for 50% infection.

We will discuss later more sophisticated models :
e.g. the S(susceptible)-I(infected)-R(recovered) models, that include the
rate of recovery from the infection.

Ravi Chella Mathematical Modeling



Epidemiology Model

Problem: If ten students returning from the winter break to an isolated
college of 1000 students have a flu virus, how long before half the
students have been infected, for k=10−4 day−1.

dy
dt

= 10−4y(1000− y) y(0) = 10

⇒
∫

dt = 104
∫

dy
y(1000− y)

= 10

[∫
dy
y

+
∫

dy
1000− y

]
⇒ t = 10 ln

y
1000− y

+ c

t = 10 ln
99y

1000− y
using y(t = 0) = 10

About 46 days for 50% infection.

We will discuss later more sophisticated models :
e.g. the S(susceptible)-I(infected)-R(recovered) models, that include the
rate of recovery from the infection.

Ravi Chella Mathematical Modeling



Epidemiology Model

Problem: If ten students returning from the winter break to an isolated
college of 1000 students have a flu virus, how long before half the
students have been infected, for k=10−4 day−1.

dy
dt

= 10−4y(1000− y) y(0) = 10

⇒
∫

dt = 104
∫

dy
y(1000− y)

= 10

[∫
dy
y

+
∫

dy
1000− y

]
⇒ t = 10 ln

y
1000− y

+ c

t = 10 ln
99y

1000− y
using y(t = 0) = 10

About 46 days for 50% infection.
We will discuss later more sophisticated models :
e.g. the S(susceptible)-I(infected)-R(recovered) models, that include the
rate of recovery from the infection.
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Two-compartment Pharmacokinetic models

Compartment 1 (central) blood and well perfused organs, e.g. liver,
kidney, etc. ("plasma")

Compartment 2 (peripheral) poorly perfused tissues, e.g. muscle, lean
tissue, fat ("tissue")

dC1

dt
= k21C2− k12C1− kelC1

dC2

dt
= k12C1− k21C1
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Conservation Balance

The general form of the conservation balance is:

Accumulation = Input - Output + Generation- Consumption

Overall Mass:

Accumulation = Input−Output

Species Mass:

Accumulation = Input−Output + Generation−Consumption

Energy1,2:

Accumulation = Input−Output
1The energy is taken to consist of the sum of the kinetic, potential, and
internal energy.
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Initial-Value ODE Problem—Filling of a tank

A well stirred tank is being filled with a salt solution of weight fraction ws

at a rate of F kg/h and product is being removed at a rate of P kg/h. If the
tank initially contains M0 kg of water with salt concentration w0, obtain a
mathematical model of the process that describes the rate of change of
the mass of solution M and salt concentration w in the tank.
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The dependent variables of interest are the total mass and salt
concentration of liquid in the tank.

Hence, conservation balances are
written for the total mass of liquid and mass of salt:

dM
dt︸︷︷︸

Accumulation

= F︸︷︷︸
Input

− P︸︷︷︸
Output

d(Mw)

dt
= Fws−Pw

M(t = 0) = M0 w(t = 0) = w0

We have two differential equations in seven variables: M, F, P, w, ws, w0,
M0. This can be solved if five of the variables are specified

,e.g. F=10
kg/h, P=5 kg/h, ws=0.1 kg salt/kg, as well as the initial conditions for the
differential equations: M0=100 kg, w(t=0)=w0=0 (pure water).
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Boundary-Value ODE Problem

Temperature Distribution in Rod One end of a steel rod of square
cross-section (W=1cm side) and of length L=1 m is maintained at
T0=1000C by contact with a steam chamber and the other end at TL=00C
by contact with an ice bath.

Heat is lost from the surface of the bar at a
rate proportional to the difference in temperature between the rod and the
surrounding air, which is at Ta=250C. The proportionality constant,
termed the heat transfer coefficient h=0.1 W/m2 0C. The equation
describing the steady-state temperature distribution in the rod (obtained
by applying the conservation of energy balance and assuming that the
temperature is uniform over the cross-section of the rod):

d2T
dz2 =

4h
Wk

[T −Ta]

The boundary conditions for this differential equation are:

T (z = 0) = T0 = 1000C T (z = L) = TL = 00C

k is the thermal conductivity of the rod, a measure of the ability of a
material to conduct heat.
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Linear System of Algebraic Equations

Example:
A car company makes cars, minivans and SUVs at three factories.

Factory F1 makes 2500 cars, 3000 minivans and 1500 SUV,
Factory F2 makes 1800 cars, 4000 minivans and 1200 SUV,
Factory F3 makes 2200 cars, 3500 minivans and 1300 SUV.
If the total productions costs are $112.0, $116.4, and $113.6 million at F1,
F2, and F3, respectively,
find the production costs for making each car, minivan, and SUV.
Let x1, x2, and x3 be the production costs of each car, minivan, and SUV,
respectively.

2500x1 + 3000x2 + 1500x3 = 112.0×106

1800x1 + 4000x2 + 1200x3 = 116.4×106

2200x1 + 3500x2 + 1300x3 = 113.6×106

Required to solve this system of equations for x1, x2, and x3.
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System of Algebraic Equations

Flow in a Pipe The pressure drop ∆P in a fluid flowing in a straight pipe
of length L and diameter D is related to the velocity of the fluid v, and the
viscosity µ and density ρ of the fluid by:

∆P
L

= kDα
µ

β
ρ

γvδ

where k is a dimensionless constant. Set up the system of equations to
be solved for the exponents α , β , γ and δ by requiring that the
dimensions of the left hand side and the right hand side of the above
equation are identical.
Note: In terms of the fundamental units of mass [M], length [L] and time
[t], the dimensions of viscosity are [M]/[L][t] and pressure are [M]/[L][t]2.
You should similarly write down the dimensions of the other physical
variables in the given equation and equate the dimensions of the
fundamental units on both sides of the equation.
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Dimensional Analysis

∆P
L

= kDα
µ

β
ρ

γvδ

[M][L]−2[t]−2 = Lα︸︷︷︸
Dα

·Mβ L−β t−β︸ ︷︷ ︸
µβ

·MγL−3γ︸ ︷︷ ︸
ργ

·Lδ t−δ︸ ︷︷ ︸
v−δ

Equating exponents on both sides:

[M] : β + γ = 1

[L] : α−β −3γ + δ =−2

[t] : −β −δ =−2

A system of linear algebraic equations in the exponents α , β , γ , and δ .
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In-class exercise (1/20/10)

A lake has a volume of 500×109 m3 with a pollutant mass fraction of
x=0.0005. There is an annual inflow of 50×109 m3 due to runoff
(xin = 0.0002), annual rainfall of 100×109 m3, an annual evaporation
loss of 100×109 m3, and an annual drawoff for irrigation of 50×109 m3.
What is the mass fraction of pollutant in the lake after two years?
You may assume that the lake contents are uniform.
Liquid density is 103 kg/m3.
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