
Lecture 8 (1st order ODEs), Outline

I Classification of ODEs, directional field
I Separation of variables, homogenoues functions
I Exact differentials and their physical significance
I Integrating factors, variation of parameters, ’shrewd

substitutions’

SUGGESTED READING:
M. Tenenbaum and H. Pollard, Ordinary Differential Equations, Chapters
1 and 2
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Definitions

Differential Equation A relationship between changing entities (variables)
and rates of change (derivatives).

dy
dx

= x2y−3
∂V
∂x

+
∂V
∂y

= 0

Solution Any function (explicit or implicit) which does not involve
derivatives, and which satisfies identically the differential
equation, e.g.

y = C1 cos(ax)+C2 sin(ax) is a solution of y ′′+a2y = 0
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Definitions

Ordinary Differential Equation (ODE) A differential equation which
involves derivatives with respect to only one independent
variable.

Partial Differential Equation A differential equation which involves
derivatives with respect to two or more independent
variables.

Order The order of a differential equation is the order of the
highest order derivative which is present.

y ′′+2yy ′+ y = sin(x) is a second-order ODE

Degree The power to which the highest derivative term is raised.

(y ′′)2 = (1+ y ′)3 is of degree two
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Definitions

Linear Differential Equation Does not involve product terms among
dependent variables and their derivatives. i.e. all
coefficients are functions of independent variables or
constant. Otherwise the equation is termed non-linear.

y ′′+3y ′+ y = ex is linear

(y ′′)2 = (1+ y ′)3 is nonlinear

Homogeneous Differential equation Every single term contains the
dependent variables or their derivatives.
Else non-homogeneous.

y ′′+3y ′+ y = 0 is homogeneous

y ′′+3y ′+ y = ex is non-homogeneous
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General vs particular solution

Under certain conditions (to be detailed in subsequent sections), an n-th
order differential equation has a solution with n arbitrary constants
(parameters), and this general solution, or more precisely, an
n-parameter family of solutions is unique. A particular solution
satisfies the equation and does not contain arbitrary constants. A general
solution contains every particular solution. The n arbitrary constants are
determined from initial or boundary conditions.

y = Asin2x +B cos2x

is the general solution of the second-order equation

y ′′ =−4y

the particular solution satisfying y(0)=0, y’(0)=2 is

y = sin2x
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Example

EXAMPLE

Find a differential equation whose 2-parameter family of solutions is

y = c1ex + c2e−x .

[Hint: 2 constants suggest 2nd order equation, thus differentiate twice. The
differential equation must not contain any constants, so you need to eliminate
them.]
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Directional field

Geometric interpretation of the solutions: integral curves
EXAMPLE

y ′ = x + y ⇒ y = ex − x−1
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First-Order Differential Equations

A first-order differential equation of the form:

y’=f(x,y) ⇐⇒ N(x ,y)
dy
dx

+M(x ,y) = 0

can always be expressed in the form:

M(x ,y)dx +N(x ,y)dy = 0

Existence and Uniqueness Theorem

The sufficient condition for this equation to have a unique solution which
passes through any given point of a region R of the xy plane is that f(x,y)
and ∂ f

∂y are continuous, real, finite and single-valued in R.
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Separable Differential Equations

A first-order differential equation is termed separable if it can be
expressed in the form:

g(y)dy = f (x)dx ⇐⇒ y ′ = F(x) ·G(y)

⇒
∫

g(y)dy =
∫

f (x)dx + c

Reduction of eqn with homogeneous coeffs to separable form

I f(x,y) is homogeneous of order n if f (tx , ty) = tnf (x ,y), where
t > 0 and n is a constant.

Reduction to separable form

The differential equation M(x ,y)dx +N(x ,y)dy = 0 with coefficients
M(x ,y) and N(x ,y) being homogeneous functions of order n can be
reduced to a separable form by substitution y = ux ,dy = u ·dx + x ·du
(or x = uy ).
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Example

An ODE of the form:

dy
dx

= g
(y

x

)
can be made separable by the transformation u=y/x:

y = ux ⇒ dy
dx

= u+ x
du
dx

= g(u)

⇒ dx
x

=
du

g(u)−u

EXAMPLE

dy
dx

=
y2

xy− x2 =
(y/x)2

(y/x)−1
=

u2

u−1

⇒ dx
x

=
du

u/(u−1)
⇒ u− lnu = lnx + c
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Exact Differential Equations

I A differential expression (form) M(x ,y)dx +N(x ,y)dy is called an
exact differential if it is the total differential du of some function
u(x ,y), i.e. if M(x ,y) = ∂

∂x u(x ,y) and N(x ,y) = ∂

∂y u(x ,y).

I A 1-parameter family of solutions of the differential equation
M(x ,y)dx +N(x ,y)dy = 0 is then u(x ,y) = c, where c is a
constant.

I A necessary and sufficient condition for the equation to be exact
is

∂M
∂y

=
∂ 2u

∂x∂y
=

∂N
∂x

Example

xdx + ydy = 0 is exact

− ydx + xdy = 0 is not exact
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Physical Significance of Exact Differentials

I If the total derivative of a function u is exact, its integral has the
same magnitude regardless of the path taken.

I In physical chemistry and in thermodynamics, state functions
(functions whose values depend only on the state and not on the
path taken to get to that state), e.g. internal energy, are exact
differentials.

I Path functions (functions whose values depend on the path), e.g.
work, are inexact differentials.
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Exact Differential Equations — Solution

∂u
∂x

= M⇒ u =
∫

M(x ,y)dx + k(y)

N =
∂u
∂y

=
∫

∂M
∂y

dx +
dk
dy

⇒ dk
dy

= N−
∫

∂M
∂y

dx

⇒ k(y) =
∫ [

N−
∫

∂M
∂y

dx

]
dy + c

Similarly we can show:

u =
∫

N(x ,y)dy + l(x)

l(x) =
∫ [

M−
∫

∂N
∂x

dy

]
dx + c
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Example

dy
dx

=−(2xy +3x2)

x2

⇒ (2xy +3x2)dx + x2dy = 0

⇒M = 2xy +3x2 N = x2

⇒ ∂M
∂y

= 2x =
∂N
∂x
⇒ Exact

∂u
∂x

= M = 2xy +3x2⇒ u =
∫
(2xy +3x2)dx + k(y)

⇒ u = x2y + x3 + k(y)

∂u
∂y

= N = x2 = x2 +
dk
dy
⇒ dk

dy
= 0⇒ k(y) = c

Note that the solution u(x ,y) = C defines y as an implicit function of x .
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Some recognizable exact DEs
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Integrating Factors

I a multiplying factor which will convert an inexact DE into an exact
one

I no general rule is known to discover it, except for some special types
of DEs

If the first-order ODE:

Pdx +Qdy = 0 is not exact, i.e.
∂P
∂y
6= ∂Q

∂x

We may be able to find an integrating factor F, such that

∂ (FP)
∂y

=
∂ (FQ)

∂x

(FP)︸︷︷︸
M

dx +(FQ)︸ ︷︷ ︸
N

dy = du is exact
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Solving special types of ODEs using integrating factor

P(x ,y)dx +Q(x ,y)dy = 0

A≡ ∂P
∂y

B ≡ ∂Q
∂x

(a) ODE can be put in separable form: g(y)dy=f(x)dx ?
(b) A = B⇒ ODE is exact
(c) A 6= B:

(i) if l = 1
Q (A−B) is only a function of x

⇒ Integrating Factor F(x) = e
∫

l(x)dx

(ii) if k = 1
P (B−A) is only a function of y

⇒ Integrating Factor F(y) = e
∫

k(y)dy

(iii) if P=yf(xy) and Q=xg(xy), then 1
(xP−yQ) is an I.F.
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Example

dy
dx

=− 2xy
y2− x2

⇒ 2xydx +(y2− x2)dy = 0

⇒ A =
∂ (2xy)

∂y
= 2x 6= ∂ (y2− x2)

∂x
=−2x = B

l =
2x− (−2x)

y2− x2 6= l(x)

k =
−2x−2x

2xy
=−2

y
= k(y)

⇒ F = e
∫
(−2/y)dy = e−2 lny = y−2

⇒ x2 + y2 = cy
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Linear First-Order ODE, Integrating Factor

- both the dependent variable and its derivative are of the first degree

y ′+p(x)y = r(x)

Methods of solution
1 (faster) Integrating factor (F(x) = e

∫
p(x)dx )

2 (more general) Separation of variables + Variation of parameters
(yN = yH + yP , yH = Cφ(x)→ yP = C(x)φ(x))

Using the integrating factor F(x) = e
∫

p(x)dx ,

d(yF)
dx

= Fy ′+ y pF︸︷︷︸
F ′

= F(y ′+py) = Fr

yF =
∫

F(x)r(x)dx + c

y(x) =
1
F

[∫
F(x)r(x)dx + c

]
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Examples

EXAMPLE

dy
dx

+5y = 50

Integrating factor F = e
∫

5dx = e5x

d
dx

(ye5x) = 50e5x ⇒ ye5x = 10e5x + c⇒ y = 10+ ce−5x

EXAMPLE

dy
dt

+
4

2t +5
y = 10 y(t = 0) = 0

Integrating factor F = e
∫

4/(2t+5)dt

= e2 ln(2t+5) = eln(2t+5)2
= (2t +5)2

y(2t +5)2 =
∫

10(2t +5)2 dt + c =
5
3
(2t +5)3 + c

y =
5
3
(2t +5)+ c(2t +5)−2
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’Shrewd substitutions’

- Some non-linear equations can be transformed to the previous cases
(linear, exact etc.) by an appropriate substitution, thus arriving at an
exact solution.
EXAMPLE (BERNOULLI EQUATION)

y ′+p(x)y = g(x)yα , where α is a real number.

Substitution: u(x) = [y(x)]1−α yields

u′ = (1−α)y−α y ′ = (1−α)y−α(gyα −py)

= (1−α)(g−py1−α)

u′+(1−α)pu = (1−α)g,

a linear first-order ODE in u.

Ravi Chella, Petr Hotmar 1st Order ODEs



Example

y ′−Ay = By2

u = y−1

⇒ u′ =−y−2y ′ =−y−2(By2 +Ay)

⇒ u′ =−B−Ay−1

⇒ u′+Au =−B linear 1st-order ODE in u

u =−e−Ax
[∫

BeAx dx + c

]
=−B

A
+ ce−Ax

y =
1
u
=

1
−(B/A)+ ce−Ax
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