
Lecture 9 (2nd order ODEs), Outline

I Complex numbers, linear independence of functions
(Wronskian)

I Homogeneous linear DE with constant coefficients;
characteristic equations, roots (3 cases)

I Nonhomogeneous linear DE with constant coefficients;
variation of parameters and undetermined coefficients

I Examples

SUGGESTED READING:
M. Tenenbaum and H. Pollard, Ordinary Differential Equations, Chapter 4
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Linear Second-Order ODE

Standard form (nonhomogeneous equation):

y ′′+p(x)y ′+q(x)y = r(x) (**)

Reduced form (homogeneous equation):

y ′′+p(x)y ′+q(x)y = 0

Existence and Uniqueness Theorem

If f0(x), f1(x), · · · , fn(x) and r(x) are each continuous functions of x on a
common interval I and fn(x) 6= 0 when x is in I, then the linear differential
equation

fn(x)y
(n)+ fn−1(x)y

(n−1)+ · · ·+ f1(x)y
′+ f0(x)y = r(x)

has one and only one solution y = y(x).
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More on solutions

Form of solutions
If Existence and Uniqueness Theorem satisfied, then the homogeneous
linear DE has 2 linearly independent solutions y1(x) and y2(x) and their
linear combination is also a solution (the general solution, 2-parameter
family of solutions), i.e.

yh(x) = c1y1(x)+ c2y2(x).

The general solution (2-parameter family of solutions) of the
nonhomogeneous equation is:

y(x) = yh(x)+ yp(x),

where yp(x) is a particular solution of the equation with no arbitrary
constants.
y1(x) and y2(x) are called a basis (or a fundamental system) of
solutions of the reduced equation.
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Linear Independence of Solutions

If p(x) and q(x) are continuous functions of x on an open interval I, then
two solutions y1 and y2 of (**) are linearly independent on I if and only if
their Wronskian W is nonzero on I:

W (y1,y2) =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣= y1y ′2− y2y ′1

Example

W (y1 = cosωx ,y2 = sinωx) =

∣∣∣∣ cosωx sinωx
−ω sinωx ω cosωx

∣∣∣∣
= ω (cos2

ωx + sin2
ωx)︸ ︷︷ ︸

=1

= ω

W (y1 = ex ,y2 = xex) =

∣∣∣∣ex xex

ex (x +1)ex

∣∣∣∣
= (x +1)e2x − xe2x = e2x 6= 0
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Second-Order Homogeneous Equations with Constant
Coefficients

If the coefficients are functions of x with no restrictions placed on their
simplicity, the DE will usually not have solutions expressible in terms of
elementary functions. We therefore assume the coefficients are
constants.

Standard Form:
y ′′+ay ′+by = 0

Postulate a solution of the form y = eλx

⇒ (λ 2 +aλ +b)eλx = 0

⇒ (λ 2 +aλ +b) = 0 (Characteristic equation)
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Roots of Characteristic Equation

λ1 =
1
2

(
−a+

√
a2−4b

)
λ2 =

1
2

(
−a−

√
a2−4b

)

Three cases depending on sign of a2−4b:

Case I. (REAL and DISTINCT) Two real roots if a2−4b > 0.
Case II. (REAL and REPEATED) A real double root if a2−4b = 0.
Case III. (IMAGINARY) Complex conjugate roots if a2−4b < 0.
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Case I. Two Distinct Real Roots λ1 and λ2

y1 = eλ1x y2 = eλ2x

General Solution (superposition principle):

y = c1eλ1x + c2eλ2x

Example

y ′′−5y ′+6y = 0

⇒ λ
2−5λ +6 = 0

⇒ λ1 = 3 λ2 = 2

⇒ y(x) = c1e3x + c2e2x
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Case II. Real Double Root λ =−a/2

Problem: The two roots no longer linearly independent.
Solution: Having y1 = eλx , let y2 = f (x)eλx . Plugging-in, we obtain
f ′′ = 0⇒ f (x) = c1 + c2x .

y1 = eλx y2 = xeλx , where λ =−a
2
.

General Solution:
y = c1eλx + c2xeλx

Example

y ′′−6y ′+9y = 0

⇒ λ
2−6λ +9 = 0

⇒ λ = 3

⇒ y(x) = (c1 + c2x)e3x
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Case III. Complex Roots

λ1 = α + iβ , λ2 = α− iβ ,

where α ≡−a
2

and β ≡
√

b−a2/4.

y = d1eα+iβx +d2eα−iβx .

eλ1x = eαx+iβx = eαx(cosβx + i sinβx)

eλ2x = eαx−iβx = eαx(cosβx− i sinβx)

⇒ y = eαx(c1 cosβx + c2 sinβx)

Example

y ′′+4y = 0

⇒ λ
2 +4 = 0

⇒ λ1 =+2i λ2 =−2i

⇒ y(x) = Asin2x +B cos2x
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Particular Integral yp(x)

I Method of Variation of Parameters (MVP)

I Method of Undetermined Coefficients (MUC)

I Method of Inverse Operators

Comments:

I All methods above work for linear DEs of any order (including 1st
and 2nd)!

I MVP: General (for both variable and constant coefficients), BUT
more tedious.

I MUC: Faster (no integration needed), BUT only for constant
coefficients and special right-hand sides.
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Method of Variation of Parameters (MVP)

The solution to the non-homogeneous second-order linear ordinary
differential equation:

y ′′+ay ′+by = r(x)

is given by

y(x) = c1y1(x)+ c2y2(x)

+ y2(x)
∫

r(x)y1(x)
W (x)

dx︸ ︷︷ ︸
u2(x)

−y1(x)
∫

r(x)y2(x)
W (x)

dx︸ ︷︷ ︸
u1(x)

where y1(x) and y2(x) are linearly independent solutions of the
corresponding homogeneous equation (r(x)=0), and the Wronskian:

W ≡ y1y ′2− y2y ′1
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Proof

Postulate:

yp(x) = u1(x)y1(x)+u2(x)y2(x)

⇒ y ′p = u′1y1 +u1y ′1 +u′2y2 +u2y ′2
⇒ y ′′p = u1y ′′1 +u2y ′′2 +u′1y ′1 +u′2y ′2 +(u′1y1 +u′2y2)

′

⇒ u1 (y
′′
1 +py ′1 +qy1)︸ ︷︷ ︸

=0

+u2 (y
′′
2 +py ′2 +qy2)︸ ︷︷ ︸

=0

+(u′1y ′1 +u′2y ′2)︸ ︷︷ ︸
=r(x)

+(u′1y1 +u′2y2)
′︸ ︷︷ ︸

=0

+(u′1y1 +u′2y2)︸ ︷︷ ︸
=0

= r(x)

u′1y1 +u′2y2 = 0,

u′1y ′1 +u′2y ′2 = r(x).
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Example by MVP

y ′′−8y ′+16y = 6xe4x

y1 = e4x y2 = xe4x W = e8x

⇒ u1 =−
∫

(xe4x)(6xe4x)

e8x dx =−2x3

u2 =+
∫

(e4x)(6xe4x)

e8x dx = 3x2

⇒ y = (c1 + c2x + x3)e4x

Ravi Chella, Petr Hotmar Second-Order ODE



Method of Undetermined Coefficients (MUC) — Overview

y ′′+ay ′+by = r(x)

CONDITION: Applicable if each term of r(x) has a finite number of
linearly independent derivatives (LIDs)⇒ a,xk ,sinax ,cosax etc.
PROCEDURE: Differentiate r(x) repeatedly and keep track of the different
terms which arise. yP is written as a linear combination of these terms.
e.g.

r(x) = k sinωx or k cosωx ⇒ yP = K sinωx +M cosωx

r(x) = kxn⇒ yp = a0 +a1x + · · ·+apxn (n non-negative integer)

r(x) = keαx ⇒ yp = Ceαx

r(x) = keαx cosωx or keαx sinωx ⇒ yp = eαx(K cosωx +M sinωx)

This method cannot be used when repeated differentiation of r(x) does
not lead to a finite number of terms, e.g. lnx .
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Method of Undetermined Coefficients (MUC) — Specifics

Compare terms of r(x) with those of yH .
2 cases may arise:

I CASE I.
IF r(x) and yH contain different terms;
THEN yP is a linear combination (LC) of the terms in r(x) and all its
LIDs.

I CASE II.
IF r(x) contains a term, which (ignoring constants) is xk a term u(x)
of yH ;
THEN yP is a LC of xk+r u(x) and all its LIDs, where r is the
multiplicity of the root from which u(x) was obtained. For other terms
see CASE I.

NOTE: When forming the LC, functions that already appear in yH may be
omitted.
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Example (Case I)

y ′′+4y ′+4y = 6sin3x

yh = (c1 + c2x)e−2x

yp = asin3x +b cos3x

y ′′p +4y ′p +4yp = (−5a−12b)sin3x +(12−5b)cos3x

⇒−5a−12b = 6 12a−5b = 0

⇒ a =−30/169 b =−72/169

y = (c1 + c2x)e−2x − 30
169

sin3x− 72
169

cos3x
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Example (Case II)

y ′′−8y ′+16y = 6xe4x

⇒ λ
2−8λ +16 = (λ −4)2 = 0

⇒ yh = (c1 + c2x)e4x

yp = Ax3e4x

y ′p = Ae4x(3x2 +4x3)

y ′′p = Ae4x(6x +24x2 +16x3)

Ae4x [(6x +24x2 +16x3)− (24x2 +32x3)+16x3]︸ ︷︷ ︸
=6x

= 6xe4x

⇒ A = 1

⇒ y = (c1 + c2x + x3)e4x
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MUC examples

Determine the functional form of the particular solution:

1 y ′′+4y ′+4y = 4x2 +6ex , yH = (c1 + c2x)e−2x , yP =?

2 y ′′−3y ′+2y = 2xe3x +3sinx , yH = c1ex + c2e2x , yP =?

3 y ′′−3y ′+2y = 2x2 +3e2x , yH = c1ex + c2e2x , yP =?

4 y ′′−3y ′+2y = xe2x + sinx , yH = c1ex + c2e2x , yP =?

5 y ′′+4y ′+4y = 3xe−2x , yH = (c1 + c2x)e−2x , yP =?
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Example 1 — Homogeneous solution

y ′′+4y ′+3y = 65cos2x

⇒ λ
2 +4λ +3 = 0

⇒ λ1 =−1 λ2 =−3

⇒ yh = C1e−x +C2e−3x
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Example 1 — Particular solution by MVP

y1 = e−x y2 = e−3x

⇒W = y1y ′2− y2y ′1 = (e−x)(−3e−3x)− (e−3x)(−e−x) =−2e−4x

yp = e−3x
∫

(e−x)(65cos2x)
(−2e−4x)

dx−e−x
∫

(e−3x)(65cos2x)
(−2e−4x)

dx

=−65
2

e−3x
∫

e3x cos2x dx︸ ︷︷ ︸
e3x
13 (3cos2x+2sin2x)

+
65
2

e−x
∫

ex cos2x dx︸ ︷︷ ︸
ex
5 (cos2x+2sin2x)

=−cos2x +8sin2x
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Example 1 — Particular solution by MUC

For the particular solution by the method of undetermined coefficients, the
non-homogeneous term r(x) and its derivatives contain terms only of the
form cos2x and sin2x

yp = K cos2x +M sin2x

y ′p =−2K sin2x +2M cos2x

y ′′p =−4K cos2x−4M sin2x

substituting into complete ODE and collecting coefficients:

[−4K +8M +3K ]cos2x +[−4M−8K +3M] = 65cos2x

⇒ 8M−K = 65 −M−8K = 0

⇒ K =−1 M = 8
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Example 2

y ′−2y ′+ y = x2 + x3/2ex

Homogeneous solution:

⇒ λ
2−2λ +1 = 0

a repeated root λ = 1

⇒ y1 = ex y2 = xex

W = y1y ′2− y2y ′1 = (ex)[ex(x +1)− (xex)(ex) = e2x
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Example 2: Particular Solution

Theorem

Let L(y) = y ′′+ay ′+by . If y1 is the solution of L(y) = r1(x) and y2 is the
solution of L(y) = r2(x), then y1 + y2 is the solution of
L(y) = r1(x)+ r2(x).

For the particular solution, it is convenient to use method of undetermined
coefficients for x2 term and method of variation of parameters for x3/2ex

term:
yp1 = k0 + k1x + k2x2

Substituting this postulated solution and its derivatives into the ODE

(2k2−2k1 + k0)+(−4k2 + k1)+ k2x2 = x2

⇒ k0 = 6 k1 = 4 k2 = 1
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Example 2: Particular Solution

x3/2ex term:

yp2 = xex
∫

(ex)(35x3/2ex)

(e2x)
dx−ex

∫
(xex)(35x3/2ex)

(e2x)
dx

= (35xex)

(
x5/2

5/2

)
− (35ex)

(
x7/2

7/2

)
= 4x7/2ex

y = (C1 +C2x)ex + x2 +4x +6+4x7/2ex .
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Applications

EXAMPLE

Find the family of curves with the property that the area of the region bounded by
a curve of the family, the x axis, the lines x = a,x = x is proportional to the
length of the arc included between these two vertical lines.
EXAMPLE

A body of T = 180 ◦C is immersed in a liquid, which is kept at T = 60 ◦C. In 1
minute, T of the immersed body decreases to 120 ◦C. How long will it take for
the body’s temperature to decrease to 90 ◦C?
EXAMPLE

A particle moving on a straight line is attracted to the origin by a force F. If the
force of attraction is proportional to the distance x of the particle from the origin,
describe the motion that the particle will execute.
EXAMPLE

A capacitor with capacitance 2/1010 farad, an inductor with coefficient of
conductance 1/20 henry and a resistor with resistance 1 ohm are connected in
series. If at t = 0, i = 0 and the charge on the capacitor is 1 coulomb, find the
charge q and the current i in the circuit due to the discharge of the capacitor
when t = 0.01 seconds.
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