Lecture 9 (2nd order ODEs), Outline

» Complex numbers, linear independence of functions
(Wronskian)

» Homogeneous linear DE with constant coefficients;
characteristic equations, roots (3 cases)

» Nonhomogeneous linear DE with constant coefficients;
variation of parameters and undetermined coefficients

» Examples

SUGGESTED READING:
M. Tenenbaum and H. Pollard, Ordinary Differential Equations, Chapter 4
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Linear Second-Order ODE

Standard form (nonhomogeneous equation):
y'+p(x)y" +a(x)y = r(x) (*)
Reduced form (homogeneous equation):

Yy +p(x)y +q(x)y=0

Existence and Uniqueness Theorem

If fo(x), fi(x), -+, f(x) and r(x) are each continuous functions of x on a
common interval / and f,(x) # 0 when x is in /, then the linear differential
equation

£2(X) Yy + £ (X)) o B (X)Y + o (X)y = r(X)

has one and only one solution y = y(x).
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More on solutions

Form of solutions

If Existence and Uniqueness Theorem satisfied, then the homogeneous
linear DE has 2 linearly independent solutions y1(x) and y»(x) and their
linear combination is also a solution (the general solution, 2-parameter
family of solutions), i.e.

yn(x) = c1y1(x) + caya(x).

The general solution (2-parameter family of solutions) of the
nonhomogeneous equation is:

y(x) = yna(x) + yp(x),

where y,(x) is a particular solution of the equation with no arbitrary
constants.

y1(x) and y»(x) are called a basis (or a fundamental system) of
solutions of the reduced equation. |
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Linear Independence of Solutions

If p(x) and g(x) are continuous functions of x on an open interval |, then
two solutions y; and y» of (**) are linearly independent on | if and only if
their Wronskian W is nonzero on I:

W(y1,y2) = y1/ y% =Y1¥o— Yo¥i
Yi Yo
Example
. COosS WX sinwx
W(y1 = coswx,y, =sinwx) = —@WSsinWX CoS WX

= o (cos® wx +sin® wx) = ®

=1
xe
eX (x+1)e*

=(x+1)e¥ —xe® = £0

X X

W(y1 = e",y. = xe*) =
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Second-Order Homogeneous Equations with Constant

Coefficients

If the coefficients are functions of x with no restrictions placed on their
simplicity, the DE will usually not have solutions expressible in terms of
elementary functions. We therefore assume the coefficients are
constants.

Standard Form:

Y +ay +by=0

Postulate a solution of the form y = e**

= (A2 +al +b)e* =0
= (A24+al+b)=0 (Characteristic equation)
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Roots of Characteristic Equation

Three cases depending on sign of a° — 4b:

Case |. (REAL and DISTINCT) Two real roots if & —4b > 0.
Case Il. (REAL and REPEATED) A real double root if & — 4b = 0.
Case lIl. (IMAGINARY) Complex conjugate roots if a® —4b < 0.
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Case |. Two Distinct Real Roots A4 and A5

=6 =g

General Solution (superposition principle):

A1X

y=c€e —i—CzeAQX

Example

y'—5y' +6y=0
=A% -51+6=0
:>)L1:3 12:2

= y(x) = c16¥ + e
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Case Il. Real Double Root A = —a/2

Problem: The two roots no longer linearly independent.
Solution: Having y1 = e, let Yo = f(x)e“. Plugging-in, we obtain
f"=0= f(X) = Cy + CoX.

a
yy=e yo = xe**, where A = 5

General Solution:

y = ¢ e 1 o xe*

Example
y'—6y'+9y=0
=2A%2-61+9=0
=A1=3

= y(x) = (¢ + cox)e**
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Case lll. Complex Roots

M= a+iP, lzza—iﬁ
where ot = —— and B=+b—a?/4
y = dye® x4 dze"‘ P,
eMX = e HiPX — o (cos Bx + isinfx)
e’ = g~ IPX — g% (cos Bx — isin Bx)

=y = e™(cicos fx + casinfx)

Example
y'+4y=0
=A%2+4=0
=M =+2i Ao = —2i
= y(x) = Asin2x + Bcos2x
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Particular Integral yp(x)

» Method of Variation of Parameters (MVP)
» Method of Undetermined Coefficients (MUC)
» Method of Inverse Operators

Comments:

» All methods above work for linear DEs of any order (including 1st
and 2nd)!

» MVP: General (for both variable and constant coefficients), BUT
more tedious.

» MUC: Faster (no integration needed), BUT only for constant
coefficients and special right-hand sides.
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Method of Variation of Parameters (MVP)

The solution to the non-homogeneous second-order linear ordinary
differential equation:

y'+ay +by = r(x)
is given by

y(x) = cry1(x) + caya(x)

) [ TR gy [ 1N
— —_——

ua(x) ur(x)

where y1(x) and y»(x) are linearly independent solutions of the
corresponding homogeneous equation (r(x)=0), and the Wronskian:

W = yi1ys — oy,
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Postulate:
Yo(x) = ur(x)y1(x) + uz2(x)y2(x)
= Yp = Uy Y1+ Y] + Upya + Uzy;
= Yp = Uryy + Uays + Uy Yy + Upyo + (Ui vt + Upy)
= u1 (v +pyi+ay1) + e (Vo +pya+ aQyz)

=0 =0
+ (uyyq + Usys) + (Ui yr + Usy) + (Uyyr + tayz) = r(x)
:r(x) ;FO ;,0

Uiyt + Upys =0,
Uy Yy + sy = r(x).
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Example by MVP

y" —8y +16y = 6xe™

Y= e4x Yo = Xe4x W = eSx

e4x 6e4x
:>U1:—/(X )gX )dX:—2X3
e8x
4x 4x
e 6xe
U2:+/( )(SX )dx:3x2
eX

=y =(c1+cox+x%)e¥
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Method of Undetermined Coefficients (MUC) — Overview

y'+ay' + by =r(x)

CONDITION: Applicable if each term of r(x) has a finite number of
linearly independent derivatives (LIDs) = a, x*, sin ax, cos ax etc.
PROCEDURE: Differentiate r(x) repeatedly and keep track of the different
terms which arise. yp is written as a linear combination of these terms.

e.g.

r(x) =ksinwx or kcoswx = yp = Ksinwx+ Mcos wx
r(x)=kx"=yp=ap+arx+---+apx" (n non-negative integer)
r(x) = ke* = y, = Ce*™*

r(x) = keo“‘ coswx or ke® sinwx =y, = e**(Kcos wx+ Msin wx)

This method cannot be used when repeated differentiation of r(x) does
not lead to a finite number of terms, e.g. Inx.
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Method of Undetermined Coefficients (MUC) — Specifics

Compare terms of r(x) with those of y,.
2 cases may arise:

» CASE I
IF r(x) and yy contain different terms;
THEN yp is a linear combination (LC) of the terms in r(x) and all its
LIDs.

» CASE Il
IF r(x) contains a term, which (ignoring constants) is x* a term u(x)

of yu;

THEN yp is a LC of xX**"u(x) and all its LIDs, where r is the
multiplicity of the root from which u(x) was obtained. For other terms
see CASE .

NOTE: When forming the LC, functions that already appear in yy may be
omitted.
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Example (Case 1)

y' +4y' + 4y =6sin3x
yn=(c1+cox)e
Yp = asin3x + bcos 3x
Yp +4y,+4yp = (—5a—12b)sin3x + (12 — 5b) cos 3x
= —5a—-12b=6 12a—-5b=0
= a=-30/169 b=—72/169

30 72
*2X .

=(c1 +ox)e — ——sin3x — —— cos 3x
y=(er+cx) 169 169
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Example (Case Il)

y" —8y' +16y = 6xe™
=A2—8L+16=(1—4)2=0
= yh = (c1 + cox)e™
yp = Axe™
¥, = Ae™(3x2 + 4x°)
y) = Ae*(6x+24x% +16x°)
Ae™ [(6x +24x° +16x7) — (24x° +32x°) + 16x°] = 6xe™

=6x

=A=1

=y =(c1+cox +x%)e¥
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MUC examples

Determine the functional form of the particular solution:

y'+4y' +4y =4x? 166",  yu=(ci+cx)e?,  yp=7
y" —3y' +2y =2xe®* +3sinx, yy=cie*+ e, yp="?
y' =3y +2y =2x2+36%,  yy=cie+ce?, yp=?

y" =3y +2y = xe®* +sinx, Y = c1€° + e, yp="?
y'+4y +4y =3xe ¥, yu={(c1+ex)e®,  yp=7
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Example 1 — Homogeneous solution

y" +4y 4+ 3y = 65c0s2x
= A24+41+3=0
=M=—-1 A=-3
= yh=Cie ¥+ Cre™>
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Example 1 — Particular solution by MVP

X 3x

n=e ya=e€
= W= Y1Y£ _y2y1/ — (e—X)(_3e—3X) _ (e—3X)(_e—X) — _2e—4x

sy [ (e7¥)(65c0s2x) . [ (e7¥)(65c0s2x)
Yo=¢ ./ (—26_4X) —€ / (—26_4X)

65
=g /e3X0052x adx —i—?e_"/excos2x dx

813—;(30032x+2sin 2x) %(cost-{-zsinzx)

= —co0s2x + 8sin2x

Ravi Chella, Petr Hotmar Second-Order ODE



Example 1 — Particular solution by MUC

For the particular solution by the method of undetermined coefficients, the
non-homogeneous term r(x) and its derivatives contain terms only of the
form cos2x and sin2x

Yp = Kcos2x + Msin2x
¥p = —2Ksin2x 4 2Mcos 2x
y;,/ = —4Kcos2x —4Msin2x

substituting into complete ODE and collecting coefficients:

[-4K +8M +3K]cos2x + [—-4M — 8K + 3M] = 65cos 2x
= 8M—-K =265 —M—-8K=0
=K=-1 M=8
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Example 2

Y =2y +y=x24x%2¢"

Homogeneous solution:
=A% -2A+1=0
a repeated root A =1

=y =8 yo = xe&*
W = y1y — yoy; = (e°)[*(x + 1) — (xe*)(€¥) = >
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Example 2: Particular Solution

Let L(y) = y" +ay’ + by. If y; is the solution of L(y) = r1(x) and ys is the
solution of L(y) = r2(x), then y1 + y» is the solution of

L(y) = ri(x) + ra(x).

For the particular solution, it is convenient to use method of undetermined
coefficients for x2 term and method of variation of parameters for x3/2¢¥
term:

Ypy = ko + ki x+ k2X2

Substituting this postulated solution and its derivatives into the ODE

(2k2—2k1 +k0)+(—4k2+k1)+k2X2 :X2
=k =6 k=4 k=1
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Example 2: Particular Solution

x3/2¢X term:

YPzzxex/de—eX/W »

. x5/2 ; x7/2 7/2.x
= (35xe") 52 — (35¢") 77 —4x7/2¢

Y =(Ci+ Cox)e" + x® +4x+ 6+ 4x7/2e".

Ravi Chella, Petr Hotmar Second-Order ODE



Applications

EXAMPLE

Find the family of curves with the property that the area of the region bounded by
a curve of the family, the x axis, the lines x = a, x = x is proportional to the
length of the arc included between these two vertical lines.

EXAMPLE

A body of T =180°C is immersed in a liquid, which is keptat T =60°C. In 1
minute, T of the immersed body decreases to 120°C. How long will it take for
the body’s temperature to decrease to 90°C?

EXAMPLE

A particle moving on a straight line is attracted to the origin by a force F. If the
force of attraction is proportional to the distance x of the particle from the origin,
describe the motion that the particle will execute.

EXAMPLE

A capacitor with capacitance 2/1010 farad, an inductor with coefficient of
conductance 1/20 henry and a resistor with resistance 1 ohm are connected in
series. If at t = 0,i = 0 and the charge on the capacitor is 1 coulomb, find the
charge g and the current i in the circuit due to the discharge of the capacitor
when t = 0.01 seconds.
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