Lecture 2, Outline

Gaussian elimination

v

v

Matrix multiplication

v

LU factorization

v

Inverse matrix and Gauss-Jordan elimination

v

lll-conditioned matrices and round-off errors

SUGGESTED READING:
G. Strang, Linear algebra and its applications, Chapter 1
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Gaussian Elimination, Geometry, Mechanics & Cost

» Reduce N x N system by repeatedly subtracting multiples of one
equation from another equation

» Geometry: intersection of n subspaces (“hyper-planes”), singular
cases

» Mechanics: forward elimination (clear out columns below pivots,
A — U) and back-substitution. Stop and think when zero pivot
encountered (Row exchange? Look below the zero pivot for non-zero
entry. Failure signifies singularity, i.e. no solution of oo of solutions.)

> Cost: FE ~ 1n®, BS ~ 2.

EXAMPLE
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Gaussian Elimination, Geometry, Mechanics & Cost

» Reduce N x N system by repeatedly subtracting multiples of one
equation from another equation

» Geometry: intersection of n subspaces (“hyper-planes”), singular
cases

» Mechanics: forward elimination (clear out columns below pivots,
A — U) and back-substitution. Stop and think when zero pivot
encountered (Row exchange? Look below the zero pivot for non-zero
entry. Failure signifies singularity, i.e. no solution of oo of solutions.)

> Cost: FE ~ 1n®, BS ~ 2.

EXAMPLE
[Alb] — [U]b]:
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Gaussian Elimination, Geometry, Mechanics & Cost

» Reduce N x N system by repeatedly subtracting multiples of one
equation from another equation

» Geometry: intersection of n subspaces (“hyper-planes”), singular
cases

» Mechanics: forward elimination (clear out columns below pivots,
A — U) and back-substitution. Stop and think when zero pivot
encountered (Row exchange? Look below the zero pivot for non-zero
entry. Failure signifies singularity, i.e. no solution of oo of solutions.)

> Cost: FE ~ 1n®, BS ~ 2.

EXAMPLE
[Alb] — [U]b]:

2 1 1 5 2 1 1 5
4 -6 0 -2 —+(0 -8 —2 -—12
-2 7 2 9 0 8 3 14
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Gaussian Elimination, Geometry, Mechanics & Cost

» Reduce N x N system by repeatedly subtracting multiples of one
equation from another equation

» Geometry: intersection of n subspaces (“hyper-planes”), singular
cases

» Mechanics: forward elimination (clear out columns below pivots,
A — U) and back-substitution. Stop and think when zero pivot
encountered (Row exchange? Look below the zero pivot for non-zero
entry. Failure signifies singularity, i.e. no solution of oo of solutions.)

> Cost: FE ~ 1n®, BS ~ 2.

EXAMPLE
[Alb] — [U]b]:

2 1 1 5 2 1 1 5 1 1 5
4 -6 0 —2| |0 -8 -2 —12| >0 -2 12
-2 7 2 9 0 8 3 14 0 o0 2
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Matrix-Vector and Matrix-Matrix multiplication

v

Inner product of two vectors

Ax: by rows, by columns

AB: (i,j) entry is the inner product of ith row of A and jth column of
B. Why do it this way? Composition of linear functions, h=fog.

vy

» Running time O(n?), Strassen O(n'°%7).
3 by 4 matrix 4 by 2 matrix 3 by 2 matrix
by hl;‘
Ayy  Gyn - Gy O 7 * ¥
] A b2 'lbz)
Azy _Gyy Gy3— Uy —

v

S = * *
(as1) (as;) (asz3) (a = AB)3,
(o £ 0 Lo 85 ‘
o

v

Associative, distributive, NOT commutative
Matrix sums and scalar multiplication: done element-wise
EXAMPLE

v
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Matrix-Vector and Matrix-Matrix multiplication

v

Inner product of two vectors

Ax: by rows, by columns

AB: (i,j) entry is the inner product of ith row of A and jth column of
B. Why do it this way? Composition of linear functions, h=fog.

vy

» Running time O(n?), Strassen O(n'°%7).
3 by 4 matrix 4 by 2 matrix 3 by 2 matrix
by hl;‘
Ayy  Gyn - Gy O 7 * ¥
] A b2 'lbz)
Azy _Gyy Gy3— Uy —

v

S = * *
(as1) (as;) (asz3) (a = AB)3,
(o £ 0 Lo 85 ‘
o

v

Associative, distributive, NOT commutative
Matrix sums and scalar multiplication: done element-wise

EXAMPLE
0 1]]2 3| _
1 0| |7 8|
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Matrix-Vector and Matrix-Matrix multiplication

v

Inner product of two vectors

Ax: by rows, by columns

AB: (i,j) entry is the inner product of ith row of A and jth column of
B. Why do it this way? Composition of linear functions, h=fog.

vy

» Running time O(n?), Strassen O(n'°%7).
3 by 4 matrix 4 by 2 matrix 3 by 2 matrix
by @11\
ayq ag, a3 arg b ?7:< * *
21 \D22)
sy dsys sz Upy = | =* *
5 - b3, ﬂ‘,“.
(ay) (as) (as3) (@ C | [M4B)
&) G @& GHin—o ;

v

Associative, distributive, NOT commutative
Matrix sums and scalar multiplication: done element-wise

EXAMPLE
0 1]|2 8 7 8 .
[ 1 O] {7 8} = {2 3} (permutation)
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LU Factorization

» Elementary matrix subtracts a multiple / of row j from row i: 1’s on
the diagonal, (/,j) entry is —/.

EXAMPLE
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LU Factorization

» Elementary matrix subtracts a multiple / of row j from row i: 1’s on
the diagonal, (/,j) entry is —/.

EXAMPLE
Gaussian elimination as GFE, applied to A,
1 1 1 1
GFE = 1 1 -2 1 =|-2 1
1 1 1 1 1 -1 1 1
= GFE-A=
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LU Factorization

» Elementary matrix subtracts a multiple / of row j from row i: 1’s on
the diagonal, (/,j) entry is —/.

EXAMPLE
Gaussian elimination as GFE, applied to A,

1 1
1 1 —2 1 = -2 1

GFE =
1 1 -1 1 1

= GFE-A=U

“Reverse” Gaussian elimination as E~-'F~1G~', applied to U,
1 1 1

ETFlGg =12 1

1] | -1 1 11 11

L=E'"F'G'= LU=
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LU Factorization

» Elementary matrix subtracts a multiple / of row j from row i: 1’s on
the diagonal, (/,j) entry is —/.

EXAMPLE
Gaussian elimination as GFE, applied to A,

1 1
1 1 -2 1 =[-2 1

GFE =
1 1 -1 1 1

= GFE-A=U

“Reverse” Gaussian elimination as E~-'F~1G~', applied to U,
1 1 1

ETFlGg =12 1
1] |-t 1 -1 1 -1 =1 1

L=£F 6 = [10=A]

where U contains pivots and L contains multipliers from GE.
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LU Factorization, comments

>

>

A record of elimination steps, gives complete information.

For multiple right hand sides, solve: Lc = b, then Ux = ¢, with "72
operations each!

How to write LU as LDU, where L and U have 1’s on the diagonal
and D is the diagonal matrix of pivots?

d 1 uip/di us2/dh
d> 1 Uoz /o

dn 1
For a positive definite matrix (pivots positive), LDU reduces to RR”
(Cholesky factorization), where R is upper triangular.

Not all non-singular matrices possess LU factors (leading principal
sub-matrices must non-singular).
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LU Factorization, examples

» With the rows reordered in advance, PA can be factored into LU,
where P is a permutation matrix (how to find it?), e.g.

0 0 1 0 0 1
Piz=10 1 0], Pyz=10 0 1
1 0 0 010

EXAMPLE
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LU Factorization, examples

» With the rows reordered in advance, PA can be factored into LU,
where P is a permutation matrix (how to find it?), e.g.
0 0 1
1 0 O

o O O
- O O
QO = -

EXAMPLE
2 2 2

Find LU factorsof A= |4 7 7 |. To save computer memory, A can be
6 18 22

successively overwritten with information in L and U, as GE evolves.

EXAMPLE
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LU Factorization, examples

» With the rows reordered in advance, PA can be factored into LU,
where P is a permutation matrix (how to find it?), e.g.

0 0 1
1 0 0

o O O
- O O
QO = -

EXAMPLE
2 2 2
Find LU factorsof A= |4 7 7 |. To save computer memory, A can be
6 18 22
successively overwritten with information in L and U, as GE evolves.
EXAMPLE
1 2 -3 4
o 4 8 12 -8 .
Use partial pivoting on A = 5 3 5 1 and determine the LU
-3 -1 1 -4
decomposition PA = LU, where P is the associated permutation matrix. Hint:
Adjoin a “permutation counter column” to keep track of row interchanges and

remember to permute b as well, if available.
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Inverses and Transposes

>

>

>

| 2

Ainvertible, if A TA=AA"" = |

Simple for 2 by 2 matrix, or diagonal matrix

(AB)~' = B~'A~", similarly for three or more matrices
Why bother? Ax=b=x=A""b

Calculation of A~': Gauss-Jordan elimination
Instead of stopping at U, we continue by subtracting multiples of a
row from the rows above, until we reach /:

[Al] = [UIL] = [11A7]

Not practical though (n® operations, sensitive to round-off errors).

Multiple tests for invertibility: independent rows/columns, nonzero
pivots/determinant/eigenenvalues, AT A positive definite, full rank

Transpose, (AB)", symmetric matrix
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lll-conditioned matrices and round-off errors

» Finite-precision mathematics, large numbers may swamp small
numbers (different scales!).

» lll-conditioned matrix is sensitive to small perturbations. Small pivots
VS zero pivots. Condition number k =|| A ||| A~" |.

EXAMPLE
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lll-conditioned matrices and round-off errors

» Finite-precision mathematics, large numbers may swamp small
numbers (different scales!).

» lll-conditioned matrix is sensitive to small perturbations. Small pivots
VS zero pivots. Condition number k =|| A ||| A~" |.

EXAMPLE

A= [1 1 0100 1] . (ill-conditioned)

Forb = [ﬂ JX = {(2)] while for perturbed b = {2.0%01} X = [”/
EXAMPLE
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lll-conditioned matrices and round-off errors

» Finite-precision mathematics, large numbers may swamp small
numbers (different scales!).

» lll-conditioned matrix is sensitive to small perturbations. Small pivots
VS zero pivots. Condition number k =|| A ||| A~" |.
EXAMPLE

1. 1. . .
A= [1. 1.000 1] . (ill-condiitioned)

2 2 2 1
= = 1 = = /
Forb [2} , X {O] , while for perturbed b {2.0001} , X [1} /

EXAMPLE
N [0.0001

1 ” . (well-conditioned)

Forb= [;} , solve with roundoff to 3 places. Then try partial pivoting, i.e.

exchange rows so as to maximize the magnitudes of pivots.
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