
Lecture 4, Outline

I Orthogonality
I Projections onto subspaces
I Least squares method
I Orthogonal matrices and Gram-Schmidt orthogonalization

SUGGESTED READING:
G. Strang, Linear algebra and its applications, Chapter 3
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Orthogonality

I Inner product: xT x = x2
1 + · · ·+ x2

n = ‖x‖2 (definition of a norm)
I Orthogonality (in Rn): x ⊥ y ⇐⇒ xT y = 0
I Orthogonal subspaces V, W: vT w = 0 for all v ∈ V and w ∈W

Orthogonality of the 4 fundamental subspaces

The row space is orthogonal to the nullspace (in Rn) and the column
space is orthogonal to the left nullspace (in Rm).

Distance between point b and line a?

a⊥ (b− x̄a)⇒ aT (b− x̄a) = 0
⇒ x̄ = aT b

aT a

Petr Hotmar M×N Systems With No Solution, 2/8



Projections

I Projection onto a line carried out by a projection matrix P,

p = ax̄ =
aaT

aT a︸︷︷︸
P

b , where a is (n×1).

I Instead of a line a, we are given a plane, or a subspace S of Rn, and
we look for the point p on that subspace closest to b.

I If |a|= 1, then aT a = 1⇒ P = aaT .

EXAMPLE

Line going through a = (1,1,1). P =?

P =
aaT

aT a
=

1
3

1
1
1

[1 1 1
]

=

 1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 .
Notice that P is symmetric, rank is 1 and P2 = P.
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Least squares method with one variable

I Despite their unsolvability, inconsistent equations arise in practice
and have to be solved (imagine e.g. m observations, prone to error,
and n unknowns, with m > n).

I Strategy: Choose x that minimizes the average (sum of squares)
error in the equations.

EXAMPLE

2x = b1,3x = b2,4x = b3.

E2 = (2x−b1)2 + (3x−b2)2 + (4x−b3)2⇒
dE2

dx = 2[(2x−b1)2 + (3x−b2)3 + (4x−b3)4]
!

= 0

x̄ = 2b1+3b2+4b3
22+32+42 .

Least squares = projection of b onto a subspace

The least squares solution to ax = b is x̄ = aT b
aT a .
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Least squares method with several variables

Use
1. Geometry: Since p is the projection of b onto the column space of A,

the error vector b−Ax̄ must be perpendicular to that space (i.e.

must lie in the left nullspace): AT (b−Ax̄) = 0, or AT Ax̄ = AT b ; or
2. Algebra: Setting partial derivatives of

E2 = ET E = (Ax−b)T (Ax−b) to zero gives 2AT Ax−2AT b = 0.
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Least squares method, summary and examples

Least squares, summary

The least squares solution to an inconsistent system Ax = b satisfies
AT Ax̄ = AT b . If columns of A are lin. indep., than AT A is invertible and
x̄ = (AT A)−1AT b (compare with x̄ = 1

aT a aT b).

Note 1: We are effectively solving Ax̄ = p instead of Ax = b.
Note 2: When A is square and invertible, we can write (AT A)−1 as
A−1(AT )−1 : p = Ax̄ = A(AT A)−1AT︸ ︷︷ ︸

P

b = AA−1(AT )−1AT b = b.

EXAMPLE

A =

1 2
1 3
0 0

 ,
b =

4
5
6

 .

EXAMPLE
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Orthogonal matrices

Vectors q1, . . . ,qk orthonormal if

qT
i qj =

{
0 if i 6= j (orthogonality)
1 if i = j (normalization)

I Standard basis⇒ Q = I
I Orthogonal matrix Q: a square matrix with orthonormal columns,

QT Q = I⇒ QT = Q−1

EXAMPLE

Q =

[
cosθ −sinθ

sinθ cosθ

]
, QT = Q−1 =

[
cosθ sinθ

−sinθ cosθ

]
(rotation)

Why are Qs important?

I Any b = x1q1 + x2q2 + · · ·+ xnqn, where x = QT b (Fourier expansion).

I Least squares become easy:

QT Qx̄ = QT b⇒ x̄ = QT b, p = Qx̄ = QQT︸︷︷︸
P

b
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Gram-Schmidt process and QR factorization

How to turn independent, non-orthogonal vectors into orthogonal ones?
Repeated projections!

a,b,c→ q1,q2,q3 :

a′ = a, q1 = a′/‖a′‖
b′ = b− (qT

1 b)q1, q2 = b′/‖b′‖
c′ = c− (qT

1 c)q1− (qT
2 c)q2, q3 = c′/‖c′‖a b c

=

q1 q2 q3

qT
1 a qT

1 b qT
1 c

qT
2 b qT

2 c
qT

3 c

⇒ A=QR

EXAMPLE

a =

1
0
1

 , b =

1
0
0

 , c =

2
1
0

 . q1,q2,q3 =?
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