
Lecture 2, Outline

I Gaussian elimination
I Matrix multiplication
I LU factorization
I Inverse matrix and Gauss-Jordan elimination
I Ill-conditioned matrices and round-off errors

SUGGESTED READING:
G. Strang, Linear algebra and its applications, Chapter 1
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Gaussian Elimination, Geometry, Mechanics & Cost

I Reduce N×N system by repeatedly subtracting multiples of one
equation from another equation

I Geometry: intersection of n subspaces (“hyper-planes”), singular
cases

I Mechanics: forward elimination (clear out columns below pivots,
A→ U) and back-substitution. Stop and think when zero pivot
encountered (Row exchange? Look below the zero pivot for non-zero
entry. Failure signifies singularity, i.e. no solution of ∞ of solutions.)

I Cost: FE ≈ 1
3 n3, BS ≈ 1

2 n2.

EXAMPLE

[A|b]→ [U|b]: 2 1 1 5
4 −6 0 −2
−2 7 2 9

 →
2 1 1 5

0 −8 −2 −12
0 8 3 14

 →
 2 1 1 5

0 -8 −2 −12
0 0 1 2


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Matrix-Vector and Matrix-Matrix multiplication

I Inner product of two vectors
I Ax : by rows, by columns
I AB: (i, j) entry is the inner product of i th row of A and j th column of

B. Why do it this way? Composition of linear functions, h = f ◦g.
I Running time O(n2), Strassen O(nlog2 7).

I Associative, distributive, NOT commutative
I Matrix sums and scalar multiplication: done element-wise

EXAMPLE

[
0 1
1 0

][
2 3
7 8

]
=

[
7 8
2 3

]
(permutation)
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LU Factorization

I Elementary matrix subtracts a multiple l of row j from row i : 1’s on
the diagonal, (i, j) entry is −l .

EXAMPLE

Gaussian elimination as GFE, applied to A,

GFE =

1
1
1 1

1
1

1 1

 1
−2 1

1

=

 1
−2 1
−1 1 1


⇒ GFE ·A = U

“Reverse” Gaussian elimination as E−1F−1G−1, applied to U,

E−1F−1G−1 =

1
2 1

1

 1
1

−1 1

1
1
−1 1

=

 1
2 1
−1 −1 1

 ,
L≡ E−1F−1G−1⇒ LU = A ,

where U contains pivots and L contains multipliers from GE.
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LU Factorization, comments

I A record of elimination steps, gives complete information.

I For multiple right hand sides, solve: Lc = b, then Ux = c, with n2

2
operations each!

I How to write LU as LDU, where L and U have 1’s on the diagonal
and D is the diagonal matrix of pivots?

U =


d1

d2
. . .

dn




1 u12/d1 u12/d1 . . .
1 u23/d2 . . .

. . .
...
1


I For a positive definite matrix (pivots positive), LDU reduces to RRT

(Cholesky factorization), where R is upper triangular.

I Not all non-singular matrices possess LU factors (leading principal
sub-matrices must non-singular).
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LU Factorization, examples

I With the rows reordered in advance, PA can be factored into LU,
where P is a permutation matrix (how to find it?), e.g.

P13 =

0 0 1
0 1 0
1 0 0

 , P23 =

0 0 1
0 0 1
0 1 0

 .
EXAMPLE

Find LU factors of A =

2 2 2
4 7 7
6 18 22

 . To save computer memory, A can be

successively overwritten with information in L and U, as GE evolves.
EXAMPLE

Use partial pivoting on A =


1 2 −3 4
4 8 12 −8
2 3 2 1
−3 −1 1 −4

 and determine the LU

decomposition PA = LU, where P is the associated permutation matrix. Hint:
Adjoin a “permutation counter column” to keep track of row interchanges and
remember to permute b as well, if available.
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Inverses and Transposes

I A invertible, if A−1A = AA−1 = I

I Simple for 2 by 2 matrix, or diagonal matrix

I (AB)−1 = B−1A−1, similarly for three or more matrices

I Why bother? Ax = b⇒ x = A−1b

I Calculation of A−1: Gauss-Jordan elimination
Instead of stopping at U, we continue by subtracting multiples of a
row from the rows above, until we reach I:

[A|I]→ [U|L−1]→ [I|A−1]

Not practical though (n3 operations, sensitive to round-off errors).

I Multiple tests for invertibility: independent rows/columns, nonzero
pivots/determinant/eigenenvalues, AT A positive definite, full rank

I Transpose, (AB)T , symmetric matrix
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Ill-conditioned matrices and round-off errors

I Finite-precision mathematics, large numbers may swamp small
numbers (different scales!).

I Ill-conditioned matrix is sensitive to small perturbations. Small pivots
VS zero pivots. Condition number κ =‖ A ‖‖ A−1 ‖.

EXAMPLE

A =

[
1. 1.
1. 1.0001

]
. (ill-conditioned)

For b =

[
2
2

]
,x =

[
2
0

]
, while for perturbed b =

[
2

2.0001

]
,x =

[
1
1

]
!

EXAMPLE

A′ =

[
0.0001 1.

1. 1.

]
. (well-conditioned)

For b =

[
1
2

]
, solve with roundoff to 3 places. Then try partial pivoting, i.e.

exchange rows so as to maximize the magnitudes of pivots.
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