Modeling of Rolling-Web AP-PECVD Reactors

Petr Hotmar, Hubert Caquineau, Nicolas Gherardi

Materials and Plasma Processes, LABORATOIRE PLASMA ET CONVERSION D'ENERGIE, Toulouse

March 31, 2014

1 / 25

 209

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

Outline

[Reactor Description](#page-5-0)

[Optimization of Confinement Strength and Electrode Length](#page-10-0)

イロト イ団 トイモト イモト **E** 299 2 / 25

Modeling Objectives Achieved

- Optimize the AP-DBD reactor in terms of selectivity, deposition rate and product yield using a confining stream
- Examine deposition dynamics with modified T-injection and showerhead (limiting case of repeated confinements)
- Propose an injection head design with spatially uniform flow field of discharged gas using a CFD model
- Couple 1D and 2D fluid models of plasma discharge to examine plasma physics
	- In a decoupled model, time-dependent plasma equations are solved in 1D until periodic steady state is reached. The reaction source of dominant metastables $\mathsf{N}_2\left(A^3\Sigma_u^{+}\right)$ is subsequently coupled to the reaction chemistry of the 2D stationary model of the deposition reactor.

Model of Deposition Dynamics

• Incompressible, laminar flow of Newtonian solvent

$$
\rho(\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot \left[-\rho \mathbf{I} + \mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) \right], \quad \rho \nabla \cdot \mathbf{u} = 0
$$

Transport of chemical species (HMDSO precursor, $\mathsf{N}_2\left(A^3\Sigma_u^{+}\right)$ metastables and $[Si₂O]$ radicals)

$$
\nabla \cdot (-D_i \nabla c_i) + \mathbf{u} \cdot \nabla c_i = R_i
$$

Main Chemical Reactions

- HMDSO + N₂ ($A^3\Sigma_u^+$) → [Si₂O] + Y₁ (k_g = 4 × 10⁻¹¹) cm^{-3}/s , homogeneous reaction)
- 2 $[Si_2O]$ + 3 O→ Si_2O_4 (s) + Y₂ (k_s = 1/4 $\gamma c_c v_{th}$, surface reaction, oxidant excess)
- $\bullet \,$ HMDSO $+$ N $_2$ $\left(A^3\Sigma_u^+ \right) \rightarrow$ HMDSO $+$ N $_2$ $\left({\sf k}_q{\rm =}{\sf k}_g,$ parallel quenching reaction)

 Ω Ω 4 / 25

Model Justification

Justifications of:

- Fluid model: low Knudsen number, $Kn = \lambda/H \sim 10^{-4} \ll 1$, where $\lambda = kT/(\sqrt{2}\pi d^2 p) \sim 10^{-7}$ m
- Decoupling: time scale separation between diffusive mass transfer and plasma discharge $\tau_{\text{mass}} = D_C/H \sim 1$ s $\gg \tau_{RF} \sim 10^{-4}$ s
- Decoupling: time scale separation between convective mass transfer and plasma discharge $\tau_{conv} = L/U > 10^{-3}$ s $> \tau_{RF}$
- \bullet Incompressibility: Mach number $Ma = U/c \sim 10^{-2} \ll 1$. with speed of sound c
- Dimensionality reduction: large geometrical aspect ratio $W \gg H$
- Laminar flow: Reynolds number $Re=UH/\nu\sim 10^2$, where ν is the kinematic viscosity **KORKAR KERKER STAGG**

Outline

2 [Reactor Description](#page-5-0)

[Optimization of Confinement Strength and Electrode Length](#page-10-0)

イロト イ団 トイモト イモト **E** QQQ 6 / 25

Reactor Design

- Deposition rate directly proportional to wall-normal flux of deposit species.
- Hydrodynamic confinement of precursor near depositing film \rightarrow increase in selectivity and substrate-normal mass flux of reaction intermediates (radical species) due to their increased near-substrate concentration.
- Angled precusor injection serves to minimize recirculation zones and provide simple, uniform convective flow (Pe $\gg 1$).
- Injection head located close to substrate to minimize stray deposition and powder formation.
- Exhaust serves to remove by-products (incl. nano-powders) and reactive species. Angled to minimize turbulence (film inhomogeneity).

Design Limitations

- Model is, for the most part, constrained by the condition that the precursor concentration remains below a specified limit everywhere in the plasma zone. Even though relaxing this condition naturally results in increase in deposition rates, it may also induce filamentation due to increased quenching of $N₂$ metastables by HMDSO.
- At the expense of diluting the stream, the confining flow generates a high concentration layer within the gap cross section, located near the substrate.

Computational Domain – 2D cross-section

- Plasma source: $V_{RF} = 6$ kV, $f = 5$ kHz, $P = 1$ W/cm²
- Total gas flow rate $Q(N_2) = 5$ slm
- Precursor concentration $c_{A0} = 50$ ppm
- Confinement strength as a dilution factor $D = 1 f_O$, where f_Q is fraction of gas flow rate in precursor inlet
- Electrode length $L/H \in (10..100)$, $H = 1$ $H = 1$ [m](#page-7-0)m

9 / 25

Service

Computational Domain – 3D

Fig.: A 3D sketch of the reactor for substrate width 3 cm.

10 / 25

 QQQ

イロト イ団 トイモト イモト 一毛

Outline

[Reactor Description](#page-5-0)

3 [Optimization of Confinement Strength and Electrode Length](#page-10-0)

K ロ X K @ X K 경 X X 경 X X 경 2990 11 / 25

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Performance Criteria

Defining deposition selectivity S, rate v_N and yield Y_D ,

$$
S \equiv \frac{\overline{v}_D - \overline{v}_D^S}{\overline{v}_D + \overline{v}_D^S} \in \langle -1, 1 \rangle,
$$
\n
$$
v_N \equiv \frac{\overline{v}_D}{\overline{v}_D(D=0)}, \quad \text{where } \overline{v}_D^{(S)} = \frac{1}{L} \int_{x_P}^{x_L} v_D^{(S)}(x) dx, \qquad (2)
$$
\n
$$
Y_D = \frac{\int_0^H [c_A(x_P, y) - c_A(x_L, y) - c_C(x_L, y)] \mathbf{u} \cdot \mathbf{n} dy}{\int_0^H c_A(x_P, y) \mathbf{u} \cdot \mathbf{n} dy}, \qquad (3)
$$

where c_A and c_P are molar concentrations of precursor and product, respectively.

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Selectivity

Fig.: The selectivity vs dilution factor. While the confining stream increases selectivity by suppressing stray deposition, its effect diminishes for increasing L. Left: T-injection. Right: Showerhead injection.

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Deposition Rate

Fig.: The relative deposition rate vs dilution factor. The mass balance is favorable for short deposition regions. Left: T-injection. Right: Showerhead injection. The dashed line denotes an equivalently diluted system without the confining flow, for which $v_N = f_Q$.

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Deposition Rate, Leveling the Playing Field

Fig.: Confinement efficiency as the difference between the relative deposition rate and the line $v_N = f_Q$, with the linear v_N dependence representing an equivalently diluted system without the confining flow. Left: T-injection. Right: Showerhead injection.

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Example: Reference Deposition Rate Needed

So that we can: $v_N \to \bar{v}_D(Q, c_{A0}; D, L) \to \delta(v_w)$

Fig.: The mean-integral deposition rate for given (Q, c_{A0}) without confinement ($D=0$, reference). For $L/H > 40$, the additional electrode length provides negligible contribution to the integral.

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Example, Cont'd: Compensatory c'_{ℓ} $\frac{1}{40}$ Increase

Fig.: The **deposition rate** vs c'_{A0} , with $C_{A0} = c'_{A0}/c_{A0} = 1/f_Q$. Left: T-injection. Right: Showerhead injection.

イロト イ押 トイヨ トイヨ トー Ω 17 / 25

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Example, Cont'd: Compensatory c_{A0} Increase

Fig.: The deposition Peclet number Pe $_d = \frac{\delta v_w}{D_{[S^i_2 O]}}$, with $\delta v_w = \bar{v}_D L$ and $D_{[Si_2O]} = 1.13 \times 10^{-5} \text{ m}^2/\text{s}$. For $D = \text{const}$, Pe_d is thus directly proportional to the **deposited height** $\delta = \frac{1}{v_w} \int_0^L v_D(x) dx$, or the product $\bar{v}_D L$, where $v_w = \text{const}$ is the substrate speed. Left: T-injection. Right: Showerhead injection.

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Product Yield

Fig.: Silica yield vs dilution factor. The dependence on D is gradually lost for long discharges as the gas residence time becomes sufficient for almost complete conversion of the precursor irrespective of internal re-distribution of flow rates within the reactor. Left: T-injection. Right: Showerhead injection.

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Vector Optimization

A composite objective function β , based on a linear scalarization

$$
\beta = \sum_{i=1}^3 w_i f_i(\mathbf{x}), \quad \sum_{i=1}^3 w_i = 1, \quad \mathbf{x}^* = \max_{\mathbf{x} \in \mathbf{X}} \beta(\mathbf{x}), \quad (4)
$$

where $f = (S, v_N, Y_D)$ are, respectively, the individual objective functions, normalized to $(0, 1)$ range and $\mathbf{w} = (w_S, w_V, w_G)$ is a corresponding weight vector. The solution vectors $\mathbf{x} = (D, L)$ are chosen from a set $X = x : \{0 \le D < 1, 10 \le L/H \le 100\}$, with the feasible solution denoted by asterisk.

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Vector Optimization

Fig.: For a specific weighting scheme of $w_S = w_V = 0.4$, we obtain $D^* = 0.65$ and $L^*/H = 10$, based on the objective function $\beta(D, L)$. T-injection.

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Optimal Solutions

Fig.: Optimal solutions with selectivity, deposition rate and **product** yield as component objective functions. Left: Optimal dilution factor $D^* = D^*(w_S, w_W)$. Right: Optimal electrode length $L^* = L^*(w_S, w_W)$.

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Sensitivity of Optimal Solutions to the Choice of Criteria

Fig.: Optimal solutions with selectivity, deposition rate and precursor conversion $\gamma_A = 1 - \frac{\int_0^H c_A(x_L, y) \mathbf{u} \cdot \mathbf{n} \, dy}{\int_0^H c_A(x_R, y) \mathbf{u} \cdot \mathbf{n} \, dy}$ $\int_0^1 \frac{C_A(x_1,y) \, \mathbf{u} \cdot \mathbf{n} \, dy}{\int_0^H C_A(x_P,y) \, \mathbf{u} \cdot \mathbf{n} \, dy}$ as component objective functions. Left: Optimal dilution factor $D^* = D^*(w_S, w_W)$. Right: Optimal electrode length $L^* = L^*(w_S, w_W)$.

position Selectivity [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Conclusions

- Selectivity increases with D as the confining stream reduces stray deposition. The effect is, however, reduced for longer discharges due to interfacial diffusion which equalizes the cross-sectional concentration profile. T-injection preferred.
- Without compensatory increase in precursor concentration, the confinement increases deposition rate only for small L . For $L > L_{tres}$, the preferential deposition on the substrate (mass gain due to limited stray deposition) is unable to compensate for the mass loss of the precursor due to dilution. Showerhead preferred.
- \bullet The dependence of **product yield** on D is gradually lost for long discharges as the gas residence time becomes sufficient for almost complete conversion of the precursor irrespective of internal re-distribution of flow rates wit[hin](#page-22-0) [t](#page-24-0)[h](#page-22-0)[e r](#page-23-0)[e](#page-24-0)[a](#page-18-0)[c](#page-19-0)[tor](#page-24-0)[.](#page-9-0)

[Deposition Selectivity](#page-12-0) [Deposition Rate](#page-13-0) [Product Yield](#page-18-0) [Optimal Solutions](#page-19-0)

Conclusions (cont'd)

• The domains of **optimal solutions** are dependent on the choice of optimization criteria. E.g. product yield criterion is more realistic, as it considers not only the precursor conversion $(A \rightarrow C)$, but also the surface deposition of the reaction intermediate $(C\rightarrow D)$, which can only occur over an additional diffusion length. We do not, however, consider powder formation due to unfavorable bulk reactions, which can be a limiting factor for long deposition chambers with long gas residence times. In such case the reactant conversion as an optimization criterion may be preferable.