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Introduction

Forces acting on beads results in long-range velocity perturbations
that favor cooperative motion of chain segments.

In bulk, polyectrolyte chains diffuse essentially as non-draining
spherical objects of size Rg (Zimm behavior, D ∼ N3/5).

However, polymer segments appear to be electrophoresing
independently (free-draining Rouse behavior) under applied
external electric fields (µ ∼ N0 ).

In confinement, inclusion of hydrodynamic interactions due to
applied electric fields is critical in explaining polymer
migration behavior consistent with experimental observations.
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Hydrodynamic interactions for non-electric forces

Stokes flow with (∇ · v′ = 0):

−∇p + η∆v′ =

Nb∑
j

Fjδ(r − rj)

Velocity perturbation due to F: v′i =
∑

j Ωij · Fj

Hydrodynamic-interaction tensor (Green’s function, Stokeslet)

Ωij ≡ (1−δij)ΩOB
ij +ΩW

ij , where ΩOB
ij =

1

8πηrij

(
I +

rij rij
r2
ij

)
∝ 1

r

Mobility tensor µij = δijµI + Ωij
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Hydrodynamic interactions in electrolyte

Stokes flow with (∇ · v′ = 0):

−∇p + η∆v′ =

Nb∑
j

(Fjδ(r − rj) + ρf (r − rj)E0) ,

where free-charge density ρf (r) = −Qκ2 exp(−κr)/(4πr)

Velocity perturbation due to F = QE0: v′i =
∑

j Ωe
ij · Fj

Electrophoretic Stokeslet (c = 4πηκ2):

Ωe
ij ≡ (1−δij)ΩLA

ij +ΩW ,e
ij ,where ΩLA

ij =
1

cr3
ij

(
I− 3

rij rij
r2
ij

)
∝ 1

r3

Electrophoretic mobility tensor: µe
ij = δijµ0I + Ωe

ij
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Disturbance due to regular Stokeslet
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Disturbance velocity field due to point-force of unit strength and oriented
parallel (left) and perpendicular (right) to the wall at y = 0.
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Disturbance due to electrophoretic Stokeslet
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Disturbance velocity field due to potential dipole of unit strength and
oriented parallel (left) and perpendicular (right) to the wall at y = 0.
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HIs under flow and electric field in confined electrolyte

Wi

E0Pe

Ld

w

+

-
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Model description

Solvent: Newtonian, low Re limit on overlapping, structured,
FD grids

Polyelectrolyte: modified Langevin system subject to
relevant forces

Coupling: a semi-empirical hydrodynamic force, interpolation
between lattice and off-lattice points

Objective

Model dynamics of polyelectrolytes under electric fields while
accounting for hydrodynamic interactions and thermal fluctuations
in the fluid.
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Hydrodynamic forces

Newton’s equations of motion

dri
dt

= vi ,

m
dvi
dt

= −ζ [vi (t)−U(ri , t)] + FB
i (t)︸ ︷︷ ︸

FH
i (t)

+ FNH
i (t),︸ ︷︷ ︸

FSP+FEV +FW (+FEP+FDEP)

where fluctuation-dissipation theorem (FDT) requires〈
FB(t)

〉
= 0,

〈
FB(t)FB(t ′)

〉
= 2kbT ζδ(t − t ′).

FB(t) is then

FB(t) =

(
6kbT ζ

dt

)0.5

· n(t).
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Non-hydrodynamic forces

Spring: semi-flexible Marko-Siggia

Excluded-volume: soft, Öttinger’s potential

Bead-wall repulsion: Jendrejack’s potential

Normal wall distance: solve Eikonal equation (for complicated
domains, e.g. trap)

Method of lines, stabilized Adams-Bashforth, neighbor search
on Kd-tree

Electric field: Debye-Hückel approximation, linearized
Poisson-Boltzmann equation

U = u + u′: solve Navier-Stokes

ftot(r, t) = f(r) + fprt(r, t) + fthm(r, t)︸ ︷︷ ︸
∇·S

, where Landau-Lifshitz

stochastic flux tensor S has covariance given by the FDT
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Predictor-Corrector

To solve the coupled system at discrete times tn for
n ∈ [0, . . .Nt − 1]:

1 Solve, off-lattice, Langevin system with Fprt
n = Fprt(Rn,u′SS,n)

to obtain Rn+1.
2 Predict particle force Fprt

∗ (Rn+1,u′SS,n) and extrapolate to
neighboring nodes.

3 Solve, on-lattice, Navier-Stokes system with fprt∗ to obtain
u′SS,n+1.

4 Interpolate velocity perturbation to bead locations and correct
particle force Fprt

n+1(Rn+1,u′SS,n+1).

Model validation: Long-time tail of VAF, free-draining and
HIs in bulk (stretch-coil, Rouse, Zimm)
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Entropic trapping, theory

EP separation: free-solution vs gel vs “artificial” gel

Long molecules will travel faster than the short ones!

τtrap ∼ τ0 exp(∆F ), ∆F ∼ m − Esm
2, τ0 ∼ N−νD−1
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Entropic trapping, simulations

Charge screening due to counter-ion condensation. Using
Rouse model and experimental µ0, we estimate counter-ion
screening at 24 %
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Entropic trapping, predictions

Limiting behaviors of µ observed for E = 8.3 V/cm and
E = 25 V/cm. The maximum occurs for E ∼ 12 V/cm.
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Entropic trapping, animation snapshot

Snapshots of short (N=11) and long (N=41) chains at time t=1s. Long
chain has more beads facing the slit than the short chain and thus higher
probability of transit (activation regions circled). While the long chain
successfully migrated into the middle trap and nucleated into the next
shallow region, the short chain is delayed in the activation stage
negotiating the free energy barrier.
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Model description
Entropic trapping

Conclusions

Developed a new hybrid discrete-continuum model
(Langevin-Navier-Stokes with semi-empirical coupling) for polymer
dynamics of dilute solutions under confinement suitable for
complicated domains.

Predicted and quantified mobility transition from the trapping
to the free flowing behavior in entropic traps

Described translocation time dependences of short chains in
nanopores
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Background
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The overall picture

Elastic dumbells (rc ,Q) in Newtonian electrolyte

Continuity + eq. of motion = Fokker-Planck eq.

0 =

{
− ∂

∂Q
·D(Q) +

∂

∂Q
· ∂
∂Q

∆(Q)

}
ψ

Solve by perturbation series → distribution of orientations
ψ(Q, rc)

Form averages and let wall-normal COM flux jc vanish →
distribution of positions n(rc)

What’s new: stiffness (FENE) and wall-mediated HIs due to
counter-ion clouds
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Fokker-Planck equation for ψ

∂
∂Q · (Q̇ψ) = 0, ∂

∂rc
· (〈ṙc〉n) = 0, where 〈·〉 =

∫
·ψdQ.

Balancing Brownian, spring, electric and hydrodynamic forces:

ṙc = u +
1

8
QQ : ∇∇u +

1

2
Ω̄ · Fs +

2

kbT
DK · Fe −DK ·

∂ ln(nψ)

∂rc
,

Q̇ = Q · ∇u− 2µI · Fs − ¯̄Ω · Fe − kbT2µI · ∂ lnψ

∂Q
,

where DK, Ω̄ and ¯̄Ω are linearized functions of the HI tensor Ωij .

Fokker-Planck equation

2kbT

ζ

∂

∂Q
· ∂
∂Q

ψ−
(
κ̂ :

∂ψ

∂Q
Q

)
+

2a

ζ
Q· ∂ψ

∂Q
+

2

ζ

[
Q

da

dQ
+ 3a

]
ψ = 0
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Distribution functions ψ and n

Dumbell (a, b ≡ HQ2
0

2kbT
) under Poiseuille flow (Wi) and

electric field (Pe) in a slit (h,W ≡ y(h − y))

Perturbation series solution

ψ = f (a, b,Q, ˆ̇γ, ω̂)

In SS, the flux of the center-of-mass PDF n(rc) normal to the
wall must vanish, yielding an ODE for n(y):

n〈ṙc〉 · ey = 0 = f (a, b,Wi ,Pe, h,W )
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Force only

Center-of-mass distribution for different Pe. No imposed flow.Petr Hotmar Polyelectrolyte Dynamics 25/53
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Center-of-mass distribution. Flow and force in cooperation, Wi = 5/6.Petr Hotmar Polyelectrolyte Dynamics 26/53
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Depletion layer (Wi ,Pe)

LWd =
75M(b)h

4
Pe2 +

81N(b)ah

8
Wi2

(
W � h

2

)
.

2 5 10 20 50 100
Wi

1.00

0.50

0.30

0.70

Ld

Pe

1005020 3015 70
Pe

1.00

0.50

0.30

0.70

Ld

Wi

Left: Ld dependence on Wi , for Pe = 10, 20 . . . 100 with b = 10 (stiff
dumbell). Right: Ld dependence on Pe for Wi = 1, 2 . . . 100 with b = 10.
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Scaling transition

Left: Ld ∝Wiα1,2 . Deviation from the quadratic scaling (α1 = 2) is
shaded. As Wi →∞, α2 → 2/3. b=500.
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Normal stress differences

1.0 1.5 2.0 2.5 3.0 3.5 4.0
y

20

40

60

80

100

120

140

N1 N2

Wi

The difference of normal stress differences N1 and N2 (scaled by nkbT )
across the channel width, with b = 100,Pe = 1 and
Wi = 0.5, 1, 1.5, . . . 5.
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Stokeslet in Debye-Hückel electrolyte

Objective

Replace all Fe-related HI functions in the equations of motion by
the corresponding functions of the electrophoretic HI tensor
Ωe

ij ≡ (1− δij)ΩFS ,e
ij + ΩW ,e

ij , retaining only its long-range part.

Velocity field due to a potential dipole of unit strength located at
(x , y) = (5, 5) and oriented parallel (left) and perpendicular (right) to the
wall at y = 0.
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Background
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Image system in a slit

Use an image system based on free-space dipole D and other
degenerate singularities
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Migration tensors → ψ → n

Introduce reflection operators to ease computations and
linearize HI functions around q = 0, to obtain:

¯̄Ω12 = (λ1 + λ2) ¯̄M · q,
DK

12 = DK
1 − D0ω (I + 3eyey )

HI functions → Eqs. of motion for rc and Q → Fokker-Planck
for ψ → SS wall-flux ODE ∂ ln n(W )

∂W =

6ME

5h
Wi Pe +

27MEh(h2 − 2W )

320W 4
Pe2 +

81NEa(h2 − 4W )

2hW 2
Wi2
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Background
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Force only (in electrolyte)

Center-of-mass distribution for different Pe. No imposed flow. Left:
non-linear spring model, right: linear spring model.
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Flow and force in opposition (in electrolyte)

Center-of-mass distribution. Flow and force in opposition, Wi = 5/6.
Left: non-linear spring model, right: linear spring model.
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Conclusions

Extended the kinetic theory to include finite chain flexibility and
take into account wall-mediated migration due to electric field,
without explicit inclusion of counter-ion charges.

1 Predicted non-monotonic dependence of concentration layer
thickness

2 Derived depletion layer scaling and its dependence on Pe

3 Showed dependence of normal stresses on Wi

4 Linear (Hookean) spring model under-predicts the thickness of
the depletion layer compared to the non-linear model

5 HIs due to counter-ion cloud tend to decrease migration away
from the walls in combined fields
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The overall picture

Objective

Provide a comprehensive treatment of HIs in electric field under
confinement within the framework of Brownian Dynamics.

Use full electrophoretic Stokeslet (short-ranged + long-ranged
parts)

Include the corresponding wall correction
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Model equations

ṙi = u(ri ) +
N∑
j=1

µij ·
(

Fb
j + Fs

j

)
+

N∑
j=1

µe
ij · Fe

j

Brownian dynamics:

dr =

[
u +

1

kbT
D · F +

∂

∂r
·D + µe · Fe

]
dt +

√
2B · dw,

D = B · BT .

HI tensor splitting, u = uOB + uW circumvents the need to
resolve Dirac delta function. Price is non-homogeneous BCs.

−∇p + η∆uW = 0, ∇ · uW = 0,

uW = −uOB at walls
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Divergence of diffusion tensor

The divergence field (right) and its contours (left) for the source point
near a corner. H = 10µm.
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Cross-stream migration

Migration flux [jC ]mig
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]
Classification of HIs:

Internally-induced: deterministic, due to FS , AFW/TW

Externally-induced: deterministic, due to FE , AFW/TW

Diffusion-induced (primary, secondary): Brownian, due to FB

(TW, AFW)

(TW=towards wall, AFW=away from wall)
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Center-of-mass profiles

Flow field and electric field in opposition. Debye length λD = 1µm
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Concentration layer thickness

Concentration layer thickness. Wi = 10. Electrophoretic correction: # =
excluded; 2 = included.
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Shape descriptors

Shape descriptors (#,2 = Sxx/Syy and ×,+ = Tr(S)). Wi = 10.
Electrophoretic correction: #,× = excluded; 2,+ = included.
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Electrophoretic mobility

Electrophoretic mobility µe . Wi = 10. Flow reversal at Per ≈ 50.
Electrophoretic correction: # = excluded; 2 = included.
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Conclusions

Used Brownian Dynamics in a channel with full electrophoretic
Stokeslet to predict cross-stream migration patterns in an
electrolyte of arbitrary Debye length.

Predicted polymer center-of-mass distributions in confined
electrolyte

Described dependences of electrophoretic mobility and chain
size on Wi and Pe

Quantified neglect of electrophoretic wall correction,
particularly significant in strong confinement
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The overall picture

Objective

Derive an analytical form of the Stokeslet in a rectangular channel.
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Background

Cross-section of an infinite rectangular channel of dimensions D1 and D2.
The source point and field point are located at x0 = [d1, d2, 0] and
x = [x1, x2, x3], respectively. General motion of the source point (T ) is
decomposed into the translation parallel (T ‖) and perpendicular (T⊥) to
the walls, T = T ‖ + T⊥.

Petr Hotmar Polyelectrolyte Dynamics 49/53



Introduction: HIs in confinement
Translocation through entropic traps

Kinetic theory of non-linear dumbell in electrolyte
Brownian dynamics of polymer migration

Stokeslet in a rectangular channel

Background
Formulation
Solution

Problem formulation

η∇2v + δ(x− x0)e3 = ∇p,
∇ · v = 0,

v = 0 at walls.

Papkovich-Neuber formalism:

v = ∇(x · φ+ ω)− 2φ, p = 2η∇ · φ,

with harmonic functions ω and φ = (φ1, φ2, φ3) satisfying Laplace
equations,

∇2ω = ∇2φn = 0, n = 1, 2, 3.
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Solution

1 Determine φ3 as the Green’s function associated with
potential flow (rapidly convergent Fourier series).

2 Left with mixed-type BVP for φ1 and φ2, with no-slip BC at
walls → FT w.r.t x3 yields
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Solution, cont’d

1 Use FFT (eigenfunction expansions) with the basis functions
given by the corresponding Sturm-Liouville problems.

2 Truncate the sums at N terms to de-couple Fourier
coefficients to arrive at linear system

z = Γ · z + p,

where vector z contains 4N elements.

3 Solve for z, compute Fourier coefficients, inverse transform φ̂1

and φ̂2 to obtain the desired solutions φ1 and φ2.
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Questions

Thank you for your time. Questions?

Petr Hotmar Polyelectrolyte Dynamics 53/53


