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Motivation

Fundamental: biomolecules in electrokinetic flows under
confinement in non-trivial geometries

Application: lab-on-a-chip technologies, design and
optimization

Direct Linear Analysis, developed by US Genomics. Source: [1]
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Problem statement

HYBRID MODEL; SOLVENT: isothermal, Newtonian, low Re
limit on overlapping, structured, FD grids

BIOMOLECULES: modified Langevin system subject to
application dependent forces

COUPLING: a semi-empirical hydrodynamic force,
interpolation between lattice and off-lattice points

Objective

Model dynamics of biomolecules under electric fields while
accounting for hydrodynamic interactions, thermal fluctuations in
the fluid and non-linear electrokinetics.

Alternatives: Brownian / Stokesian dynamics, Lattice-Boltzmann,
Dissipative particle dynamics, Stochastic rotation dynamics
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Hydrodynamic forces

Newton’s equations of motion

dri
dt

= vi ,

m
dvi
dt

= −ζ [vi (t)−U(ri , t)] + FB
i (t)︸ ︷︷ ︸

FH
i (t)

+ FNH
i (t),︸ ︷︷ ︸

FSP+FEV +FW (+FEP+FDEP)

where fluctuation-dissipation theorem (FDT) requires〈
FB(t)

〉
= 0,

〈
FB(t)FB(t ′)

〉
= 2kbT ζδ(t − t ′).

FB(t) is then

FB(t) =

(
6kbT ζ

dt

)0.5

· n(t).
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Non-hydrodynamic forces

The bonded force is modeled by the Marko-Siggia spring law
(developed for semi-rigid worm-like chains such as DNA),

FSP
i =

kbT

2bk

((
1− Ri

q0

)−2

− 1 +
Ri

q0

)
Ri

and excluded volume interactions by soft, Öttinger’s potential,

F̂EV
i = −

N∑
j=1
i 6=j

√
3 zev

9

2
exp

(
−3

2
R̂2
ij

)
R̂ij .

The bead-wall repulsion is modeled by a potential suggested by
Jendrejack [4], which yields

FW
i =

{
−Aw
bk δ2

w
(Di − δw )2∇Di if Di < δw

0 if Di ≥ δw .

, proven accurate in DNA bead-spring modelsPetr Hotmar Dynamics of Biomolecules in Complex Microscale Geometries
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Distance function

The normal distance to the nearest wall is found as the solution to
the Eikonal equation

|∇̂D̂| = 1 for x ∈ Ω, (1)

D̂ = 0, for x ∈ ΓW ,

∇̂D̂ · n = 0, for x ∈ ΓI ∪ ΓO .

Due to Neumann BCs, we convert Eq. (1) into

dD̂

dt̂
= −

(
∇̂D̂

)2
+ γ ∆̂D̂ + 1 for x ∈ Ω.

Method of lines, Adams-Bashforth started with 4th order
Runge-Kutta, stabilized with artificial diffusion
Kd-tree and approximate nearest neighbor (ANN) search used
for efficiency
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Distance function in an entropic trap
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Electric field

Potential split into intrinsic (EDL) and applied (external)
contributions, φ = φi + φa
Needed for electrophoretic (∝ E = −∇φa) and
dielectrophoretic (∝ ∇|E|2) forces
Debye-Hückel approximation, linearized Poisson-Boltzmann
equation

∇̂2φ̂i = κ̂2φ̂i , for x ∈ Ω,

∇̂φ̂i · n = 0, for x ∈ ΓI ∪ ΓO ,

φ̂i = ζ̂w , for x ∈ ΓW ,

∇̂2φ̂a = 0, for x ∈ Ω,

φ̂a = φ̂max ,app, for x ∈ ΓI ∪ ΓO ,

∇̂φ̂a · n = 0, for x ∈ ΓW .
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Intrinsic and applied potentials

Intrinsic and applied potentials in the DEP device.
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Unperturbed fluid velocity and pressure

Primitive variables (û, p̂) formulation with electric body force
f̂e = κ̂2ûHS φ̂i∇̂φ̂a, Re → 0 yields Stokes flow

Poisson equation for pressure (incompressibility included) with
a penalty term α∇ · u to damp out oscillations

∂Θ

∂τ
= LΘ + G , for x ∈ Ω,

û = 0 (no slip), for x ∈ ΓW ,

∇̂û · n = 0 (free stream), for x ∈ ΓI ∪ ΓO ,

∂p̂

∂n
= −n · ∇ ×∇× û + n · f̂e, for x ∈ Γ, where

Θ =

[
û
p̂

]
, L =

[
∆̂ −∇̂
−α̂∇̂· ∆̂

]
, G =

[
f̂e

−∇̂ · f̂e

]
.
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Particle-fluid coupling and fluctuating hydrodynamics

ftot(r, t) = fe(r) + fc(r, t) +∇ · S,

where the particle-fluid coupling is defined as

fc(r, t) = −
N∑
i=1

{
ζeff [U(ri , t)− vi (t)] + FB

i (t)
}
δ(r − ri ),

and the Landau-Lifshitz stochastic flux tensor S has zero mean and
covariance given by the FDT,

〈
Sij (r, t) Skl

(
r′, t ′

)〉
= 2kbTη

(
δikδjl + δilδjk −

2

3
δijδkl

)
δrr′δtt

′
,
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Validation of HIs
Bulk simulations
Entropic traps
DEP separation and ICEO

Velocity disturbance near a plane wall

Analytically: Blake’s method of image singularities

Formation of polymer depletion layers, increase in ζ and τ0

Velocity contour lines of a disturbance field due to force dipole.
Solid arrows - forces; dashed arrows - velocity vectors.
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Histogram of COM in a confined channel
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Decay of VAF, long-time tails, deterministic experiment
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Thermal equilibrium, stochastic experiment

FDT does not hold for reduced coupling
FCPL
i (ri , t) = −ζeff [vi (t)−U(ri , t)] in a fluctuating fluid.
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Stretch-coil transition, Time evolution of directional stretch

τ0 extracted from an exponential fit to the chain stretch,
agrees with Fox-Flory prediction
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Relaxation time, scaling with N
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Rg scaling, FD simulation

Initial conformation grown on a 3D lattice as a SARW
R2
g ≡ 1

N2

∑N
i=1

∑N
j=i (Ri − Rj)

2
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D scaling, HI simulation

Diffusivity obtained from the Einstein formula,

D = limt→∞
〈|r(t)−r(0)|2〉

6t

FD and HI simulations compared with Rouse and Zimm models.
Petr Hotmar Dynamics of Biomolecules in Complex Microscale Geometries
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Entropic trapping, theory

EP separation: free-solution vs gel vs “artificial” gel [3]

Long molecules will travel faster than the short ones!

τtrap ∼ τ0 exp(∆F ), ∆F ∼ m − Esm2, τ0 ∼ N−νD−1
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Entropic trapping, simulations

HIs neglected

Charge screening due to counter-ion condensation. Using
Rouse model and experimental µ0, we estimate
Qeff = µ06πηa = 270 e ⇒ screening = 24 %
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Entropic trapping, predictions

Limiting behaviors of µ observed for E = 8.3 V/cm and
E = 25 V/cm. The maximum occurs for E ∼ 12 V/cm.
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Trapping, animation

Migration of short (N=11) and long (N=41) chains. While the
long chain successfully migrates, short chain is mostly governed by

isotropic diffusion.
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Kang’s dielectrophoretic (DEP) separator

Kang’s DEP separator [2], EP + DEP forces
Separation based on size and/or polarizability,
FDEP = (peff · ∇) E = 2πεf a3KCM · ∇|E|2.

Simulations (inertial, 3D, FB , fe) found sensitive to the
neglect of particle inertia and dimensionality reduction
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Quadrupolar correction to DEP force

Kang et al. introduce a heuristic factor c to correct for finite-size
of particles. To quantify, we use multipolar expansion of DEP force

F
(n)
DEP =

4πεf a2n+1

(n − 1)! (2n − 1)!!
K

(n)
CM(∇)n−1E[·]n(∇)nE,

where (2n − 1)!! ≡ (2n − 1) · (2n − 3) · . . . · 5 · 3 · 1 and [·]n means
n dyadic multiplications. The first two terms of the i-th
component of the force, dipole and quadrupole, are then

(FDEP)i = 4πεf a3

{
−1

2
Em

∂Ei

∂xm
− 1

9
a2Em

∂En

∂xm

∂2Ei

∂xn∂xm
− . . .

}
.

We found cQ ≡ F (2)/F (1) to be about 10%. Since c reported ∼
60-70%, other contributions should be identified.
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Separation, animation

DEP separation of 5µm (blue) and 15µm (green) particles.
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Induced-charge electro-osmosis (ICEO) around sharp corner

ICEO = non-linear flows arising from interactions of the
external field with non-uniform EDLs induced by the same
field

Charge spatially varying, generates dipolar charge cloud which
then drives a “quadrupolar” ICEO flow

ICEO flow around the obstacle of the DEP separator

BC φ̂i = ζ̂w for x ∈ ΓW modified as follows:

φ̂i (x) = ζ̂w − φ̂a(x) + φ̂c , for x ∈ Γo ,

where the correction potential φ̂c is introduced to ensure neutrality,

1

Γo

∫
Γo

φ̂i (x)dΓo = ζ̂w , i.e. φ̂c =
1

Γo

∫
Γo

φ̂a(x)dΓo .
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ICEO, cont’d

EDL surface potential φ̂i around the obstacle. The ICEO velocity
(red vector field) indicates a weak vortex flow.

Found negligible effect on separation efficiency. It is
reasonable to expect, however, that the ICEO flow arising due
to particle polarizability and mediated by HIs may no longer
be negligible.
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Counterion analysis in traps and separators, shape
optimization

Counterions sheared away in confinement. Non-monotonic
dependence of µ on N due to the competition between HIs
and charge screening reported in bulk.

We expect disappearance of the maximum in the mobility
curve.

Shape optimization of insulating obstacles to improve
selectivity/efficiency. applications: DNA tagging and
sequencing, DNA translocation in ion channels and synthetic
nanopores.
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Extensional flows in a hyperbolic die

Extensional flows (EFs) can be sustained over a relatively
large region, as opposed to localized EFs in four-roll mills.

Efficiency of electric-field-driven stretching in a hyperbolic die

Four-roll mill (left) and hyperbolic die (right).
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Frictional coupling in “raspberry” colloids

Extension of particle-fluid coupling to bead-spring networks,
capable of representing colloids

Shown to recover VAF tails, various surfaces may be modelled

Would be applied to the DEP device and studied in both
dilute and dense suspensions.

Deficiency: loss of accuracy in colloids near contact →
lubrication corrections?
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IBM-like electrostatics

Include electric field perturbation due to particle presence in
polymer dynamics and/or ICEO flows around moving particle

Account for similarly to the frictional coupling and Immersed
Boundary Method (IBM) approaches of hydrodynamics to
avoid expensive re-meshing

The source term in the governing equation would be modified
to reproduce the effect of boundary conditions.

The applied (similarly intrinsic) potential would then be
governed by

∇ · (εf∇φ) + S = 0, for x ∈ Ω,

where

S =

{
∇ · ((εp − εf )∇φP) for x ∈ ΩP ,
0 for x ∈ Ω \ ΩP ,

(2)
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