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Abstract

We analyze the transport and separation of biomolecules (polyelectrolytes and DNA in particular)
under electrokinetic flows in microscale geometries of critical dimensions on the order of the characteristic
size of the molecules, i.e. radius of gyration for chains. The governing systems of field equations are
discretized by finite differences on boundary-fitted overlapping grids, while the polymer is coarse-grained
into a bead-spring model that follows Langevin dynamics. The objective of the work is a mesoscale-level
treatment of hydrodynamic interactions in nanopores and entropic traps. We report on electrophoretic
mobilities, trapping times and translocation times and quantify the chain transition from free flowing
behavior to trapping behavior in terms of the electric field strength.

Keywords: mesoscale DNA dynamics, fluctuating hydrodynamics, frictional force coupling, entropic
traps, pore translocation

1 Model description

In the following model, the solvent is treated as a continuum isothermal, incompressible Newtonian fluid
governed by Stokes (creeping) flow equations, while the solute particles, coupled to the fluid, follow Newton’s
second law of motion with additional stochastic terms. In contrast to computationally-intensive direct
numerical simulation (DNS) methods, where the flow around a particle is fully resolved and the resulting
forces obtained by integrating the stress fields over particle the surface, here the no-slip boundary condition
at the particle surface is taken to give rise to a Langevin-like hydrodynamic force, composed of Stokes drag
force and stochastic Brownian force. While the idea of approximating the effect of solute on the fluid by
spreading a semi-empirical force over the surrounding grid nodes rather than enforcing a detailed boundary
condition has long been in use in the multiphase flow community (particularly in the framework of Immersed
boundary methods [50]), the specific form of the force (a constant times the difference between fluid and
particle velocities) appears in several mesoscale approaches, such as Brownian dynamics [17] or Stokesian
dynamics [64]. Thus, the particles act as localized point sources in the continuum fluid and the fluid-
particle coupling enforces momentum exchange. This type of solvent-solute interaction has been explored
particularly in the context of a fluctuating Lattice-Boltzmann model (LBM) for the fluid [1, 2, 10]. We extend
this approach to include more complicated domains and the effects of electric field, but describe the fluid
directly by the fluctuating Navier-Stokes equation. The total force acting on each particle includes, in general,
four types of contributions, arising from: the imposed electric field (electrophoretic and dielectrophoretic
forces), the hydrodynamic solvent-solute coupling (Stokes drag and Brownian force), intra-molecular forces
(spring force and excluded volume effects) and wall repulsion effects. The corresponding fields are resolved
on overlapping, finite-difference grids. These logically rectangular grids represent a compromise between
structured and unstructured grids: while retaining good performance of a structured grid, they offer more
flexibility over Cartesian or multi-block grids and adequately resolve boundary layers (such as the electric
double layer).

∗email: hotmape@eng.fsu.edu
†email: rchella@eng.fsu.edu

1



2 Hybrid model

We introduce the model for a coarse-grained polyelectrolyte chain in Sec. 2.1 and give the scales used
throughout this work in Sec. 2.2. Equations of motion for the particles, Sec. 2.3, require solutions of
the governing equations for the electric and hydrodynamic fields, discussed in Sec. 2.4 and 2.5. Sec. 2.6
describes the particle-fluid frictional coupling, whose full implementation requires renormalization of the
friction coefficient, Sec. 2.7. For mathematical convenience and physical consistency, we transform the steady-
state governing equations into their time-dependent forms, Sec. 2.9. The overall algorithmic implementation
is detailed in Sec. 2.10.

2.1 Chain coarse-graining

Following [9] and [40], we interpret coarse-graining as averaging over irrelevant degrees of freedom (DOFs),
the (ir)relevancy being based on the ratio of the characteristic time scale to the time over which the DOFs
equilibrate. Slow variables are thus retained as essential features to ensure global accuracy while fast variables
are in a quasi-steady state of equilibrium. A related concept of decimation is used in the renormalization
group theory.

Bead-spring models of polymer chains, Fig. 1, constitute a compromise between finer-grained, yet stiffer,
bead-rod models and rheological dumbbells. We use a coarse-grained bead-spring model, in which the beads
represent points of solute-solvent interaction and the springs reflect the entropic forces that result from
averaging of a finer-grained bead-rod model with rigid Kuhn rods as bead connectors. The chain is uniquely
specified by the following set of parameters: the contour length L, number of springs Ns (or, equivalently,
number of beads N), Kuhn length bk and bead radius a. Related variables that can be derived from the
above set and will be used throughout this work are maximum spring extension q0 = L/Ns, number of Kuhn
segments per spring Nks = q0/bk and root mean square (RMS) spring extension Rs = bk

√
Nks, with kb the

Boltzmann constant, Ks the spring constant and T the temperature.
The admissible range for the number of springs Ns varies over a bounded interval; since each spring

corresponds to one normal mode, the lower bound is determined by the highest frequency of motion we wish
to capture, ω, so that the relaxation time τNs

< ω−1. The upper bound arises due to the assumption of a
sufficiently long random walk (with step size equal to Kuhn length) in the derivation of spring force laws; [71]
suggests Ns < 0.1Nk, where Nk is the number of Kuhn steps. The remaining parameters, namely Kuhn
length bk, bead radius a and excluded-volume interaction factor v are determined by matching the radius of
gyration, longest relaxation time and diffusion coefficient to the experimental values, as was done in [34]; we
employ the same values for our benchmark chain in simulations.

2.2 Non-dimensionalization

The equations used in this work are non-dimensionalized – as indicated by the hat symbol – in a self-
consistent manner. The three fundamental scales used are length L0 (characteristic geometry dimension H
in confinement and particle radius a or maximum spring extension q0 in free space), time T0 (diffusive, L

2/D)
and force F0 (thermal, kbT/L0). The derived scales include electric potential φ0 (intrinsic ζw and applied
φmax,app), electric field strength E0 (φmax,app/L0), velocity U0 (L0/T0), pressure P0 (U0η/L0) and friction
coefficient ζ0 (F0/U0), where ζ = 6πηa is the friction coefficient, ρ solvent density, η viscosity, D diffusion
coefficient, ζw wall zeta potential (located at the shear plane of the electric double layer) and φmax,app the
maximum applied potential.

2.3 Particle dynamics

The equations of motion for the ith bead of mass m are given by

dri
dt

= vi,

m
dvi

dt
= −ζ [vi(t)−U(ri, t)] + FB

i (t) + FNH
i (t). (1)
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Fig. 1: Bead-spring model.

The Brownian force FB
i (t) is derived from the fluctuation-dissipation theorem and averaged over a time

interval dt,

FB(t) =

(

6kbTζ

dt

)0.5

· n(t). (2)

The Wiener increments are represented by the components of the random vector n, which have Gaussian
distribution with zero mean and unit variance [40]. It should be noted that we are effectively solving the
general, non-linear and non-Markovian Langevin equation. The dynamics, however, is studied here only
with times much larger than the relaxation time scale, m/ζ, in which case the memory function reduces to
the friction coefficient ζ. The effects of the Gaussian force, Eq. (2), can thus be given by its first and second
moment [76],

〈

FB(t)
〉

= 0,
〈

FB(t)FB(t′)
〉

= 2kbTζδ(t− t′), (3)

where FB(·) is a one-dimensional component of the random force and δ(t − t′) is the Dirac delta function,
which indicates absence of correlations in the force between any distinct time intervals dt and dt′.

U(ri, t) is the total fluid velocity at particle location ri, which can be decomposed into the base, un-
perturbed velocity field (see Sec. 2.5) and a velocity disturbance field u′, arising due to the perturbations
from particles (see Sec. 2.6), i.e. U = u + u′. At the same time, U(ri, t) is a mathematically convenient
construct, which extrapolates the continuous fluid velocity field to the bead center. This velocity includes
self-interaction, i.e. the deviation of the streamlines around the bead due to the bead itself, along with the
effects of other particles, mediated by vorticity diffusion. Such velocity is not physically correct [39], although
the error appears negligible yet difficult to quantify precisely. In addition, the self-interaction contribution
contains an artifact of grid spacing; while there is formally an essential singularity in the Stokeslet at the
source point, the method instead assigns a finite velocity to the source. This is because on a lattice with
finite spacing, the Dirac delta function appearing in the force coupling described in Sec. 2.6 is smeared rather
than localized. Renormalization of the friction coefficient, discussed in Sec. 2.7, attempts to address both of
these issues.
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The total non-hydrodynamic force contains, in general, contributions from the electrophoretic, dielec-
trophoretic, spring, excluded-volume and wall forces, respectively, i.e.

FNH = FEP + FDEP + FSP + FEV + FW . (4)

Assuming a thin electric double layer (EDL) on the particle surface, neglecting polarization and retar-
dation effects and using the point-dipole approximation, the electrophoretic and dielectrophoretic forces are
given by [36],

FEP = 6πζpǫaE, (5)

FDEP = −πǫa3∇|E|2, (6)

where ζp is surface potential on the particle and ǫ the fluid permittivity. Since the point dipole model
neglects particle size, Eq. (6) is only approximate as it neglects higher order multipoles. Such an assumption
is consistent with the force-coupling model and, furthermore, Hu [31] notes that the error is negligible as long
as a≪ H. Nevertheless, we examine the effects of higher order multipole corrections on dielectrophoresis in
Appendix A. Eq.(6) additionally assumes insulating particles in DC fields, for which the Clausius-Mossotti
factor, KCM ≡ (σp − σf )/(σp + 2σf ), where σp and σf are electrical conductivities of particle and fluid,
respectively, reduces to -1/2.

The bonded force is modeled by the Marko-Siggia spring law [31], which describes well the semiflexible
rigidity of a worm-like chain such as DNA. The spring force exerted on bead i by spring i is

FSP
i =

kbT

2bk

(

(

1− Ri

q0

)−2

− 1 + 4
Ri

q0

)

Ri

Ri
, (7)

where the spring vector Ri ≡ ri+1 − ri and the inter-bead distance Ri = |Ri|.
For a solvent far away from θ-temperature, excluded-volume interactions (EVs) need to be included.

Pair-wise EVs between beads i and j are short-ranged and can thus be approximated by the delta function,

UEV
ij ≈ vkbTδ (Rij) , (8)

with Rij ≡ ri−rj , Rij = |Rij | and v the interaction volume parameter [60]. The delta function can, in turn,
be approximated by a Gaussian potential, which is a common starting point when developing computational
implementations. Jendrejack’s potential [34], which is softer than the traditional Lennard-Jones and is based
on Öttinger’s work [53], is particularly suitable for our purpose as it depends on the root-mean-square spring
extension and thus reflects the details of coarse-graining. Upon taking negative gradient of the potential, we
obtain the force on bead i in the form

FEV
i =

N
∑

j=1

243 vkbT

4
√
2π3/2 b4kRs

exp

(

−
9R2

ij

2R2
s

)

Rij . (9)

The bead-wall repulsion is modeled by a potential suggested by Jendrejack [34], proportional to the cubic
power of the bead-wall distance and active only within boundary layer of thickness δw,

UW
i =

{

Aw

3 bk δ2w
(Di − δw)

3
if Di < δw

0 if Di ≥ δw,
(10)

where Di is the normal distance of i bead from the nearest wall. The corresponding force is

FW
i =

{

−Aw

bk δ2w
(Di − δw)

2 ∇Di if Di < δw
0 if Di ≥ δw,

(11)

The parameter Aw regulates the strength of the force and is typically on the order of O(kbT ). If too small,
the beads may penetrate walls when large forces or velocity gradients are encountered. If too large, the chain
motion becomes unphysically retarded by the dominant wall force and will not obey the relevant scaling laws.
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Respecting the order of magnitude estimate, we thus assign it the lowest value that prevents wall penetration.
For the choice of δw we may find some guidance in [45], which reports that in slow flows the thickness of the
depletion layer near the walls is roughly 3a. The depletion layer is set up through the combined effect of
steric hindrance and HIs. However, in confined flows, HIs become partially screened due to nearby no-slip
walls; the dominance of steric effects thus suggests δw ∼ a. Alternative techniques of incorporating wall
effects have been used, such as repositioning a penetrating bead to the nearest wall [38] or representing the
wall force as a linear superposition of several phenomenological contributions, including those due to electric
double layer, van der Waals forces and steric effects [16].

Since the normal distance to the nearest wall (scaled by the geometry length scale H) can be viewed as a
signed distance function D̂, it can be efficiently found in complex geometries as the solution to the Eikonal
equation

|∇̂D̂| = 1 for x ∈ Ω, (12)

D̂ = 0, for x ∈ ΓW ,

∇̂D̂ · n = 0, for x ∈ ΓI ∪ ΓO,

where n represents a unit normal to the surface, Ω is a bounded computational domain in R3, Γ = ΓW ∪
ΓI ∪ ΓO is the boundary of Ω, and ΓW , ΓI and ΓO are boundary segments corresponding to the walls, inlet
and outlet of the domain, respectively. Equation (12) is a special case of a general family of Hamilton-Jacobi
equations, whose fast marching solution and suitable numerical Hamiltonians are discussed in [62]. However,
if Neumann boundaries are present, as in our case, fast marching algorithms require modification, which
results in decreased computational efficiency. As an alternative approach, we square Eq. (12) and convert
the steady-state problem into an initial-value problem

dD̂

dt̂
= −

(

∇̂D̂
)2

+ γ ∆̂D̂ + 1 for x ∈ Ω, (13)

where γ > 0. Explicit time-stepping (the 4-step Adams-Bashforth method started with the 4th order
Runge-Kutta method) is applied until steady-state is achieved. While D̂ is continuous, its gradient satisfies
a conservation law that can develop shocks, and thus is expected to be discontinuous. To stabilize our central
difference scheme, we add artificial dissipation, which corresponds to the second term on the right hand side
of Eq. (13). Stabilization based on even-order derivatives is frequently encountered in numerical solutions of
hyperbolic equations, cf. Lax-Friedrichs and Lax-Wendroff schemes. As an added benefit of this approach,
tuning γ may allow one to take into account the curvature of the bounding surfaces, e.g. by reducing or
increasing the normal distance around concave or convex corners [18]. While wall repulsion is only active
within a finite boundary layer adjacent to the walls of the bounding geometry, we want to retain the option
of changing the boundary layer thickness without having to recompute the distance function. Consequently,
the underlying grid on which the Eq. (13) is solved consists of a coarse background grid and fine, overlapping
boundary layer grids.

In the presence of walls in the domain, the distance function and its derivatives are needed at each time
step. To expedite access to these variables, they are pre-processed into a data structure (kd-tree), which
is then used to perform an approximate nearest neighbor (ANN) search, outlined in [5]. After the search,
the current location of the bead i is mapped to the nearest gridpoint at which the values of D̂ and ∇̂D̂ are
available.

Most systems exhibit large separation of the inertial and diffusive time scales, m/ζ ≪ L2/D; e.g. for a
micron particle in water at room temperature, the separation is of the order of O(104) [42]. We can then
integrate the Langevin equation, Eq. (1), over the inertial time scale, arriving at a typical Brownian dynamics
representation. The acceleration term in Eq. (1) vanishes and the condition of force balance follows.

2.4 Electric field

We use a linearized Poisson-Boltzmann equation for the electric potential, which results from the Debye-
Hückel approximation. Due to the numerical approach employed, this approximation is, however, non-
essential and can be relaxed if walls with high surface potentials need to be modeled. The total potential
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is split into a linear superposition of the intrinsic potential φi (due to wall charge) and applied potential
φa (due to the externally imposed electric field), φ = φi + φa, yielding Helmholtz and Poisson equations,
respectively:

∇̂2φ̂i = κ̂2φ̂i, for x ∈ Ω,

∇̂φ̂i · n = 0, for x ∈ ΓI ∪ ΓO,

φ̂i = ζ̂w, for x ∈ ΓW , (14)

∇̂2φ̂a = 0, for x ∈ Ω,

φ̂a = φ̂max,app, for x ∈ ΓI ∪ ΓO,

∇̂φ̂a · n = 0, for x ∈ ΓW . (15)

The gradient operator and the inverse Debye length κ are scaled by L0. The potentials appear in the body
force acting on the fluid and in the electrophoretic and dielectrophoretic forces acting on the particles, which
are proportional to the electric field strength E = −∇φa and ∇|E|2, respectively. Since the gradient of the
intrinsic potential is dominant only in a thin EDL adjacent to the walls, its contribution to E is neglected.

2.5 Unperturbed fluid velocity and pressure fields

The incompressible, steady-state Navier-Stokes equations for a solvent of density ρ are tackled in the primitive
variables formulation. If an external electric field is imposed, the right-hand side will contain an additional,
Korteweig-Helmholtz electric body force given by the divergence of the Maxwell stress tensor as f = ρfE =
−ρf∇φa, with the effects due to electrostriction and non-uniform permittivity neglected, yielding

ρu · ∇u+∇p− η∇2u = f , ∇ · u = 0 for x ∈ Ω, (16)

where the volumetric free charge density ρf = −ǫκ2φi follows from Eq. (14). After non-dimensionalization,
we have

Re û · ∇̂û+ ∇̂p̂− ∇̂2û = f̂ , (17)

∇̂ · û = 0, for x ∈ Ω, (18)

û = 0 (no slip), for x ∈ ΓW , (19)

∇̂û · n = 0 (free stream), for x ∈ ΓI ∪ ΓO, (20)

where f̂ = Ceφ̂i∇̂φ̂a, Ce = κ̂2ûHS , Helmholtz-Smoluchowski characteristic velocity uHS = −ǫζwE0/η and
Reynolds number Re = ρU0L0/η. For microscale geometries, Re → 0, so the convective term in Eq. (17)
vanishes, reducing the system to the creeping flow model. To reformulate the boundary value problem in
terms of the pressure-Possion system, we generate a Poisson equation for the pressure by taking the divergence
of the momentum equation (17) and using the incompressibility condition (18). Following Henshaw [28], we
also add a penalty term proportional to the velocity divergence,

α(x)∇ · u,

to dampen out pressure oscillations arising from the use of central finite difference formulas on a collocated
grid. To derive a boundary condition for pressure, the normal component of the momentum equation is
typically applied on the boundary [25]. Such boundary condition is insufficient [28], however, and needs to
be supplemented by the incompressibility constraint, δ ≡ ∇ · u = 0. Alternatively, the normal derivative
of the velocity divergence can be required to vanish at the boundary, ∂δ/∂n, yielding a curl-curl boundary
condition [56] for the pressure. The resulting pressure equation thus adopts the form of

∇̂2p̂− α̂∇̂ · û = ∇̂ · f̂ , for x ∈ Ω, (21)

∂p̂

∂n
= −n · ∇ ×∇× û+ n · f̂ , for x ∈ Γ, (22)

where ∇̂ · f̂ = Ce∇̂φ̂i∇̂φ̂a. The elliptic equation for the pressure, Eq. (21)-(22), thus replaces the continuity

equation, Eq. (18). The factor α̂ is set to a constant, (L0/∆x)
2
, where ∆x is an average grid spacing.
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2.6 Fluid-particle coupling

The momentum transfer between a particle and the fluid is introduced through a Langevin-like particle force
that is assumed to have the following form [1],

F
prt
i (ri, t) = −ζeff [vi(t)−U(ri, t)] + FB

i (t). (23)

The effective friction ζeff can be estimated by a systematic procedure discussed in Sec. 2.7. Based on the
deterministic and stochastic simulations [1] performed with this method, we expect that the Brownian force
(last term on the right hand side of Eq. (23)) can be neglected if thermal fluctuations in the fluid are to be left
unresolved. We will thus refer to Eq. (23) with only the Stokes drag term (first term on the right-hand-side)
as reduced coupling, as opposed to the full coupling of Eq. (23).

While the conceptual idea of force coupling has been employed within the last three decades in e.g. Brow-
nian dynamics, Immersed boundary method or coupled Langevin equations approach [54], a rigorous treat-
ment of the specific form given by Eq. (23) has been pioneered only recently, mostly in the context of a
Lattice-Boltzmann fluid [1, 2, 10]. The main goal of this concept is to capture the velocity-dependent HIs
with a reasonable compromise between accuracy and computational efficiency.

Practitioners of force coupling implicitly assume it to be instantaneous; in other words, there is large time
scale separation required between momentum transfer and chain diffusion [10, 45], i.e. the Schmidt number

Sc =
ν

D
≫ 1, (24)

where ν is kinematic viscosity. This is typically achieved for micron-scale structural units immersed in
aqueous solvent at room temperature [42], thus allowing one to neglect the influence of the shape of the
particles on the disturbance fields and treat the particles as point masses. None of these assumptions are,
however, essential for the model to remain valid. The effect of larger particles can be partially accounted
for by using regularized delta functions, typically in the form of radial basis functions [41] or regularized
Stokeslets [15]. Small Schmidt numbers (e.g. for short chains), on the other hand, will require unsteady
Stokes flow description. This is because large diffusion coefficients restrict the time step (∆t < τD ≈ R2

g/D,
Rg is the radius of gyration of the chain), thereby increasing the frequency of the forcing. This in turn
leads to large Reynolds to Strouhal number ratio, Re/Sr = R2

g/(ν∆t), necessitating presence of the time
derivative in the Stokes equation. The inclusion of the inertial term also frees us from the assumption of
large particle density (compared to the fluid).

Based on the above considerations, we can rewrite the Navier-Stokes equation (16) in a time-dependent
form,

ρ
∂U

∂t
+∇p− η∇2U = f tot, ∇ ·U = 0, (25)

with the advection term U ·∇U neglected in the low Reynolds number limit. We have also added additional
force densities; the total force density acting on the fluid at a field point r, f tot(r), now contains contributions
from the base field (electric field) f , fluid-particle coupling fprt and thermal fluctuations in the fluid f thm,
yielding

f tot(r,R, t) = f(r) + fprt(r,R, t) + f thm(r, t), (26)

thus acquiring a form similar to that of the stochastic immersed boundary method [7]. Denoting the 3N
vector of all bead positions ri as R, Eq. (26) explicitly emphasizes the dependence of the particle force
density fprt on the bead positions, coupling the Langevin equation and the Navier-Stokes equation; a specific
implementation of the solution to such coupled system is discussed in Sec. 2.10. In analogy with linear
splitting of the total velocity field into the superposition of the base and perturbation fields, U = u+u′, we
define

f ′ = fprt + f thm, (27)

as the force density inducing the corresponding perturbation flow u′. The coupling force density follows
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naturally from Eq. (23) as

fprt(r,R, t) = −
N
∑

i=1

{

ζeff [U(ri, t)− vi(t)] + FB
i (t)

}

δ(r− ri) (28)

= −
N
∑

i=1

F
prt
i δ(r− ri), (29)

where the thermal fluctuations f thm(r, t), described in Sec. 2.8, need to be included to satisfy the fluctuation-
dissipation theorem [2, 54, 39]. By finding a stationary solution of the Fokker-Planck equation associated
with the system of Eqs. (1) (with FNH = 0) and (25), it can be shown [1] that the presence of f thm in Eq. (26)
is needed for the full coupling to satisfy the fluctuation-dissipation theorems for the particle-fluid system.
We note that for unbounded flow, the over-damped limit of the Langevin equation (1) with the coupling
described above is equivalent to the Brownian dynamics scheme [17], provided we drop the hydrodynamic
interaction tensors and replace the homogeneous flow field of the solvent with a more accurate U. In
addition, if f tot = fprt, the free-space Green’s function of the singularly forced Eq. (25) can be obtained
analytically, either by Laplace transform [57] or by analogy with the fundamental solution of the unsteady
heat equation [13].

While mathematically self-consistent, the coupling is only an approximate replacement of the no-slip
boundary condition at the surface of rigid objects, with the error growing with the decreasing time and
length scales [1]. There are two additional physical issues with this coupling [39]: first, the friction is not
strictly Markovian; this, however, has little effect on the long-time dynamics we are interested in. Second, as
mentioned in Sec. 2.3, the fluid velocity field U necessarily includes self-interaction, which will underestimate
the drag force. This can be partially remedied by renormalizing the friction coefficient and adopting ζeff
(Sec. 2.7).

2.7 Friction renormalization

The bare friction coefficient ζ needs to be renormalized for HI simulations to account for lattice discretization.
A simple procedure [10] assumes an effective friction ζeff in the form of

1

ζeff
=

1

ζ
+

g

η∆x
, (30)

where the constant g can be obtained as follows. We apply a point force F and measure the velocity at
the origin of the force, u(0). Since the ratio of that velocity to the applied force should be equal to the
Green’s function of the Stokes flow, which is inversly proportional to the viscosity and the distance between
the source point and the observation point, we expect

u(0)

F
=

g

η∆x
. (31)

2.8 Fluctuating hydrodynamics

Efficient solutions of the Landau-Lifshitz Navier-Stokes equations (LLNS) are an area of active research,
with exponential integrators in Fourier space [7] and modified Runge-Kutta methods [72] showing promise.
To account for thermal fluctuations in LLNS, the right-hand-side of Navier-Stokes equation is augmented by
the divergence of stochastic flux tensor, f thm = ∇ · S, with zero mean and covariance given by [8]

〈Sij (r, t)Skl (r
′, t′)〉 = 2kbTη

(

δikδjl + δilδjk − 2

3
δijδkl

)

δ(r− r′)δ(t− t′), (32)

where subscripted δ is a Kronecker delta.
For an isothermal fluid, the components of S can thus be written as

Smn =

√

2kbTη

∆t∆Vc

(

1 +
1

3
δmn

)

· Rmn, for m,n = {1, 2, 3}, (33)
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where Vc is the volume of a cell over which the fluctuations are discretized and Rmn are independent and
identically distributed Gaussian random variables with zero mean and unit variance. Since S is a symmetric
dyad, it can be split into a symmetric traceless part and an isotropic part, S = C(

√

4/3 I+ 1)R, where the
constant C along with the contributing tensors follow from Eq. (33). Six independent random numbers are
thus needed per cell per time step to generate the required Gaussian random field discretized on the lattice.

It has been shown that the discrete system produced by central differencing will not always be thermo-
dynamically consistent and correction terms may be needed [61]. In addition, representing the fluctuations,
which are delta function-correlated in time, by ∆t−1 scaling (Eq. (33)) seems reasonable only if ∆t is smaller
than the shortest relaxation time in the system [39]. Spatial discretization is a compromise among various
factors; while we generally prefer to minimize the grid spacing to be able to resolve large field gradients
and reduce the truncation error of the finite difference scheme, the assumptions of a constant density and
constant temperature continuum fluid impose a lower bound on the grid spacing, which is on the order of
0.1 µm for physiological fluids [39]. The point force model of particles imposes a similar constraint.

2.9 False transients

For computational efficiency, the elliptic systems (14)-(15),(17)-(22) and (12) are parabolized (such a tech-
nique is known under various names, e.g. method of pseudotransients [66] or false transients [46]). To
illustrate the concept that was already applied in Eq. (13), we note that the transformed Navier-Stokes
system (17) and (21) adopts the following form:

∂Θ

∂τ
= LΘ+G, (34)

where

Θ =

[

û

p̂

]

, L =

[

∇̂2 −∇̂
−α̂∇̂· ∇̂2

]

, G =

[

f̂

−∇̂ · f̂

]

. (35)

The steady-state solution (where the time derivative vanishes identically) to the parabolized system repre-
sents the solution to the original system. The artificial time τ plays the role of an iteration parameter, which
can be modified to accelerate convergence; the system now also lends itself to various operator splitting tech-
niques that can further improve stability and accuracy. As an estimate of the upper bound for the timestep
∆τ we use the result of the von-Neumann stability analysis for the 3D diffusion equation, ∆τ ≤ (∆x)

2
/6.

If the original problem is already time-dependent (as in the case of Eq. (25)), τ becomes the real time t.
This approach thus unifies the solution methodology for the steady and unsteady state problems that we
encounter here.

2.10 Algorithm details

The base velocity and pressure fields are independent of the bead positions and thus precomputed in ad-
vance, Eq. (16). When time-stepping through the particles’ equations of motion, Eq. (1), at regular intervals
(depending on the required accuracy) we extrapolate the coupling force (Eq. (23)) from the particle po-
sition to the neighboring grid points, rescale it, update the total force density f tot (Eq. (26)) and resolve
the momentum equation (25) for the perturbed velocity and pressure fields subject to the same boundary
conditions as for the unperturbed fields (Sec. 2.5). Whenever a field value, such as fluid velocity or electric
field strength, is needed at the particle location, we interpolate it from the neighboring grid nodes using
trilinear interpolation. The same interpolation is used for distributing the hydrodynamic force back to the
fluid so as to satisfy Newton’s 3rd law.

Hereafter we drop the hats to simplify notation, assuming all variables are non-dimensional, and summa-
rize the steps to solve the system coupling fluid and particle dynamics. Written in a general form explicitly
indicating dependences on the perturbation velocity u′ and the 3N vector of bead positions R, we have a
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coupled system of Langevin equation for the particles,

m
d2R

dt2
= Fprt (R(t),u′

SS(t)) + FNH (R(t)) , (36)

R(0) = R0,
dR

dt
(0) = V0, (37)

u′
SS(0) = 0, (38)

and Navier-Stokes equations for the velocity and pressure disturbance fields, u′ and p′, respectively,

∂Θ′

∂τ
= LΘ′ +G′, Θ′ =

[

u′(τ, t)
p′(τ, t)

]

, G′ =

[

f ′(R(t),u′
SS(t))

−∇ · f ′(R(t),u′
SS(t))

]

, (39)

u′(0, t) =

{

u′
SS(0) for t = 0

u′
SS(t−∆t) for t > 0,

(40)

where the perturbation force density f ′ follows from Eq. (27), the steady-state velocity is defined as

u′
SS(t) ≡ u′(t) =

{

u′(τ, t) :
∂u′(τ, t)

∂τ
= 0

}

, (41)

the initial particle velocities V0 are drawn from the Maxwell-Boltzmann distribution and F represents the
3N vector of the corresponding bead forces Fi.

To solve the coupled system of Eqs (36)-(40) at discrete times tn for n ∈ [0, . . . Nt − 1], where Nt is the
number of time steps, we iterate through the following predictor-corrector cycle at each time step:

1. Solve, off the lattice, the Langevin system Eq. (36)-(38) with Fprt
n = Fprt(Rn,u

′
SS,n) to obtain Rn+1.

2. Predict the particle force F
prt
∗ (Rn+1,u

′
SS,n) and extrapolate to neighboring lattice nodes, Eq. (28).

3. Solve, on the lattice, the Navier-Stokes system Eq. (39)-(40) with f
prt
∗ to obtain u′

SS,n+1.

4. Interpolate the velocity perturbation to bead locations and correct the particle force Fprt
n+1(Rn+1,u

′
SS,n+1).

This approach allows us to cover the entire range of Schmidt numbers by letting Eq. (39) model either
steady or unsteady Stokes flow. For the latter, we interpret τ as the real time rather than an artificial
iteration parameter and thus redefine Eq. (41) as

u′
SS(t) ≡ {u′(τ, t) : τ = t} . (42)

Stability of Eq. (39) typically allows us to take ∆τ = ∆t and thus step 3 of the above algorithm only
needs one time step. For large Schmidt numbers, the Θ′ field will respond almost instantaneously to the
redistribution of the beads between the successive time steps and the solutions to the steady and unsteady
Stokes equations coincide.

The Langevin equation was integrated with the velocity Verlet method [21] – a fast, stable, 2nd order
accurate symplectic integrator developed originally for Hamiltonian systems. The Navier-Stokes equations
are solved by the method of lines approach: the spatial discretization uses 4th order central difference
formulas and two extra lines of ghost points while time-stepping is based on forward Euler method. As an
alternative we tested a more efficient linear multistep method (4-step Adams-Bashforth started with the 4th-
order Runge-Kutta method), but the stability region proved too restrictive for our purpose. The equations
are discretized on structured, boundary-fitted overlapping grids. Steady-state elliptic problems are, upon
discretization, solved by sparse direct (Yale) or iterative solvers (GMREs or multigrid), depending on the
size of the problem.

3 Hybrid model validation

In Sec. 3.1 we specify the simulation parameters. To validate the hybrid model and the frictional coupling
discussed in Sec. 2, we examine two direct manifestations of HIs: formation of depletion layers near solid
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boundaries, Sec. 3.2, and long-time tails of the velocity autocorrelation function (VAF), Sec. 3.3. Further,
indirect validation is sought in the context of bead-spring chain dynamics. First, we conduct bulk simulations
of polymer relaxation, Sec. 3.4, and verify bulk scaling of the diffusion coefficient, radius of gyration and
end-to-end distance with chain length, Sec. 3.5. Then, in Sec. 3.6, we discuss diffusion under confinement
and re-visit depletion layers. Appendix A addresses dielectrophoretic (DEP) separation of biological cells,
where we attempt to put a heuristic DEP correction factor, proposed in the literature, on a firmer ground
by examining multipolar corrections to the DEP force.

3.1 Physical properties and model parameters

Unless otherwise indicated, we will take as our benchmark polyelectrolyte a λ-phage DNA, stained with an
intercalating dye YOYO-1, with the following set of properties [40, 34]: 48,502 base pairs, molecular weight
Mw = 31.5 × 106 Daltons, contour length L = 21 µm, Kuhn length bk = 0.106 µm, number of springs
Ns = 10 and bead radius a = 0.077 µm.

The time step ∆t should be smaller than the diffusive time for the polymer, ∆t < τD = L2/D, where
D = kbT/ζ is the diffusion coefficient and the length scale L should reflect the size of the polymer. Further
upper bound is placed on the time step by the use of Euler-like integration schemes employed in this work;
reasonable accuracy is obtained provided the external force is slowly varying during a time interval of ∆t.
Based on these observations, we take L2 = S2

s , where S
2
s = q0bk/6 is the squared radius of gyration of an

ideal chain, and use a timestep in the range ∆t =
〈

10−3τD, 10
−2τD

〉

∼
〈

10−5, 10−4
〉

s. The simulations are
performed at room temperature in a 1 cP solvent and the results averaged over 100 realizations on a parallel
computer cluster to achieve statistical significance.

3.2 Velocity disturbance near a plane wall

Bead-wall HIs, particularly prominent in the vicinity of a wall, will generate asymmetric flow patterns in the
hydrodynamic disturbance field. These flows, in turn, affect chain migration. A prototypical example is the
formation of depletion layers [45], studied in detail in [30]. Analytical treatment of simple distributions of
point forces near a plane wall is traditionally based on the method of images [11], where the desired Green’s
function is decomposed into a free-space contribution and a collection of image singularities located outside
the domain of flow. Green’s functions for other simple geometries, including intersecting planes and circular
pipes and cones, can be derived analogously [57].

Let us consider a dumbell positioned parallel to a plane wall located at y = 0, which is the average
orientation of polymer chains in shear flows. Upon solving the Navier-Stokes equation (25) with the reduced
coupling,

fprt(r, t) = −
2
∑

i=1

{ζeff [U(ri, t)− vi(t)]} δ(r− ri), (43)

we obtain a velocity field whose contours, projected in the xy plane, are depicted in Fig. 2. We see that
particles in the vicinity of the dumbell migrate away from the walls, depleting the region in the boundary
layer, as predicted by the theory based on Blake’s method [45]. Depletion layers are re-visited in Sec. 3.6 to
further validate the model, this time in the context of bead-spring chains.

3.3 Long-time tails of velocity autocorrelation function

A straightforward way to check that HIs are, at least partially, resolved is to capture the long-time tail of
the velocity autocorrelation function (VAF) of a single particle [1]. The tail signifies a power-law decay of
VAF (∝ t−3/2) in the long-time limit, as opposed to an exponential decay predicted by the Langevin theory.
It was first reported based on molecular dynamics simulations [4] and is believed to be due to the diffusion
of, and viscous dissipation in, a vortex associated with a moving particle. It can be derived rigorously from
the Boltzmann equation with extended collision sequences [48] or mode-coupling theory [76].

Two sets of experiments were conducted. To minimize dependence of results on the mass and radius of the
bead, we chose m̂ = 1 and ζ̂ = ζc ·m̂/∆t̂, with varying friction prefactor ζc. In the first, deterministic case, all
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Fig. 2: Velocity contour lines of a disturbance field due to force dipole in the vicinity of plane wall. The solid arrows
denote the opposing forces acting on the beads while the dashed arrows denote two representative velocity vectors in
the vicinity of the force dipole.
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[14], is independent of the mass or size of the Brownian particle.
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from the mean square velocity using the equipartition theorem, kbT = m

〈

v2
〉

/3.

random forces were neglected (i.e. in the Langevin equation, unsteady Stokes equation and force coupling).
Particles were assigned unit velocity and the simulation was run for 1000 time steps with ∆t̂ = 10−5 (scaled
by the viscous time L2ρ/η) and ζc = {0.1, 0.5}. The algebraic and exponential decay of VAF were recovered
with and without force coupling, respectively, as shown in Fig. 3. The tail is sensitive to the proximity to the
nearest wall. We positioned the particle 20 diameters away from the wall; for times t > 0.1 ms, we observed
a faster decay due to the presence of no-slip boundaries.

In the second, stochastic case, thermal fluctuations in the fluid were included through the LLNS equation.
We varied ζc between 0.1 and 1 and collected the averages over 100 realizations. Recovery of the long-time
tail is now difficult, though, because of the presence of noise. Instead, we tested for thermal equilibrium.
From Fig. 4, we see that the reduced coupling violates the fluctuation-dissipation theorem, as manifested
by the temperature dependence of the friction prefactor ζc. By contrast, with the full coupling we obtain
constant temperature T = 297.29 K over the entire range of ζc, i.e. the error in temperature is now 0.2%.

3.4 Bulk relaxation time

We first consider relaxation of the chain in the bulk solution1 from a stretched conformation into a coil,
a process driven by the minimization of Helmholtz free energy. The λ-phage DNA is initially placed in a
zig-zag conformation with the bonds stretched to about 75% of the maximum extension q0. The only active
non-hydrodynamic force is the Marko-Siggia spring force; hydrodynamic interactions are ignored for now.
The simulation is run with ∆t = 10−5 s for 1 s, which is on the order of the Rouse relaxation time. We
extract the actual relaxation time of the polymer by fitting an exponential to the time evolution of the
directional chain stretch X̄ = max(ri,x) −min(ri,x), where ri,x is the position vector of the ith bead in the
direction of the original stretch. As Fig. 5 demonstrates, the relaxation time τr for the benchmark chain
with 10 springs is approx. 0.2 s. We can obtain a theoretical estimate from the Fox-Flory equation, which

1If a lattice field, such velocity or pressure disturbances due to HIs, needs to be included for bulk simulations (Sec. 3.4
and 3.5), the boundaries of the underlying finite-difference grid are placed sufficiently far away from the polymer, with the
distance being O(10Ss), to mimic bulk behavior.
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Fig. 5: Relaxation of the chain in terms of the exponential decay of directional stretch in time. The chain length
(number of beads) and the relaxation time (in seconds) are given for each curve in brackets.

relates the zero shear-rate intrinsic viscosity [η] to the molecular weight M [40],

[η] = Φ
〈

R2
〉3/2

0
M−1, (44)

where Φ is the experimentally determined Fox-Flory parameter (Φ ∼ 2.5×1023 for a θ-solvent) and
〈

R2
〉

0
=

L bk is the equilibrium mean-square end-to-end distance of an ideal chain. The Eq. (44) gives the longest
relaxation time τr [40],

τr =
Φ
〈

R2
〉3/2

0
η

SrRT
, (45)

where R is the gas constant and the ratio of the characteristic to the longest relaxation time is Sr = 1.645
for Rouse model [40]. Eq. (45) gives τr = 0.2 s, which compares favorably with our result. We can also
use Rouse model to estimate the effective bead friction coefficient ζ from the relaxation time. Noting that
polymer friction is then ζcoil = ζN , one obtains [40]

ζeff =
τr6π

2kbT

〈R2〉0N
. (46)

Upon normalizing by Stokes friction ζ, we estimate the bead drag coefficient at ζ̂eff = 0.87.
Fig. 6 shows a trajectory deviation from the free-draining model for the central bead and randomly

selected realization when HIs are included through the mechanism described in 2.10. The trajectories of a
free-draining model exhibit differences on the order of nanometers over the trajectories that result from a
model with HIs. The significance of HIs for the benchmark chain can also be gleaned from the value of the
hydrodynamic interaction parameter [40], h∗ ≡

√

3/πa/Rs = 0.17, with the typical range of h∗ ∈ [0, 0.5].

3.5 Bulk scaling laws

Next, we investigate the scaling of the radius of gyration Rg, end-to-end distance Re and polymer diffusion
coefficient D with the number of beads. The initial polymer conformation is grown on a 3-D lattice as a
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Fig. 6: The distance between trajectories of a freely-draining and hydrodynamically-interacting beads over the course
of several Rouse relaxation times is on the order of nanometers.

Polymer property

Method D̂ R̂G R̂E

Simulation 0.08 0.27 0.63
Theory 0.09 0.27 0.65

Table 1: Comparison of simulation and theoretical polymer properties for the benchmark chain Ns = 10

self-avoiding random walk with the equilibrium bond length of 1 micron, i.e. slightly larger than RMS bond
extension Rs. The chain is then allowed to equilibrate during the first 20% of the runtime.

Fig. 7 and 8 demonstrate agreement of the scaling of the Rg and Re obtained from the free-draining

simulation with the theoretical predictions. The radius of gyration, normalized by q0, is R̂G = 0.27 from
the simulation, which is within 2% of the value given by the theory for ideal, Gaussian chains; [40] gives an
experimental value R̂G = 0.36. The discrepancy between simulation and experimental data is presumably
due to non-ideality of the real chains, manifested chiefly by excluded-volume interactions and HIs. To
quantify this effect, we note that the hydrodynamic radius of the chain can be determined from the diffusion
coefficient, Rh = kbT/6πηD, which gives the ratio Rh/Rg = 1.6; a full HI simulation yields Rh/Rg = 0.6 [34].

The diffusion coefficient was computed from the Einstein formula using the mean square displacement
of the center of mass of the polymer. Fig. 9 recovers Rouse and Zimm scaling of the diffusion coefficient for
freely-draining and hydrodynamically coupled beads, respectively.

The agreement between theory and simulation is seen to be quite satisfactory, with the results for the
benchmark chain summarized in Table 1.

3.6 Confinement simulations

To examine the effects of simple confinement on the dynamics, the chain, stretched into a zig-zag conforma-
tion, was placed into a horizontal square cross-section channel with diameters varying from 1 to 10 microns.
Wall force was applied according to Eq. (11) with strength Aw = 25kbT and exclusion layer thickness
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δw = Rs/2. Fig. 10 shows the free-draining dependence of the center-of-mass diffusion coefficient D on the
channel diameter H. Compared to the axial diffusivity along the channel direction which transitions into
a power-law scaling D‖ ∝ (1/H)−2/3 at Rg/H ∼ 0.3 [33, 22], the three-dimensional diffusivity depicted in
Fig. 10 exhibits much sharper decline with the increasing confinement and much earlier transition from the
bulk value. Such behavior can be expected due to the pronounced impact of the steric wall repulsion on the
mean square displacement in the direction perpendicular to the walls. The momentum imparted to the fluid
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diffusion coefficient. Zimm scaling exponent 3/5 is based on the Flory approximation [65, 58].

by the localized beads is, in large part, absorbed by the no-slip boundary condition on the stationary walls,
which justifies the use of free-draining simulations for the prediction of diffusivity data. The wall repulsion
creates a steric boundary depletion layer, as confirmed by a unimodal probability distribution function of the
chain center-of-mass in Fig. 11. The maximum is centered around the channel centerline and the variance is
inversely proportional to the thickness of the depletion layer and the degree of confinement.

Since the confinement increases viscous drag on the chain, and the zero-shear viscosity is proportional
to the relaxation time (µ0 ∼ Gτ , where G is the characteristic modulus), the relaxation time increases
accordingly. We note in conclusion that confinement may produce other, more subtle, effects, not addressed
in this work; one such area of active research is the alteration of entropic force laws due to the loss of chain
configurational space. It has been shown [74] that the correction is prominent very close to the walls and
scales as 1/N .

4 Polymer translocation in entropic traps

In Sec. 4.1-4.2 we apply the developed model to the molecular-weight-based separation of DNA using entropic
barriers. After reviewing the basic theory in Sec. 4.1, we observe the limiting cases of trapping and flowing
regimes, identify the transition region between the two by inspecting the character of the mobility curve and
confirm the validity of the kinetic models recently reported in the literature in Sec. 4.2.

4.1 Theoretical background

Traditional DNA separation by electrophoresis is problematic for long chains. In free-solution, the elec-
trophoretic mobility µ (µ ≡ 〈v〉 /Eav, where 〈v〉 is the mean axial center-of-mass velocity and Eav is the
magnitude of the external electric field strength) is independent of the length of a polyelectrolyte (or, equiv-
alently, molecular weight) after a certain threshold length. Recent multiparticle-collision dynamics [20] and
molecular dynamics (MD) [23] studies suggest that for very short chains (typically 50 monomers or less) of
synthetic polymers and single-stranded DNA (ssDNA), the mobility exhibits a maximum; no such maximum
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Fig. 12: Meshed entropic trap geometry with overlapping, mutually interpolating grids. In the simulation we use
an array of four traps in a series. The lengths are scaled by hl.

was found for double-stranded DNA (dsDNA). In gel electrophoresis, µ is inversly proportional to chain
length, making separation of long chains inefficient.

One of the methods to increase separation efficiency is to use an “artificial gel”, such as a spatially
periodic geometry consisting of a series of alternating thin and thick regions, known as entropic traps [27],
see Fig. 12. In the prevalent configuration, the depth of the thick region hl is of the order of Rg, while
the thin region is shallower, hs < Rg. The driving force behind translocation can be an electric field or
pressure-driven flow. In standard experimental protocols, the DNA is dissolved in a buffer, labeled with a
fluorescent dye and observed under an optical microscope and/or tracked with a CCD camera [6].

Under proper conditions, long molecules will travel faster than the short ones. Such a seemingly counter-
intuitive observation can be explained by a simple kinetic model proposed by Han [27], which assumes, in
analogy with the transition state theory, an Arrhenius form for the trapping time,

τtrap ∼ τ0 exp(∆F ), (47)

where ∆F is a free energy difference between the trapped state and the activated state (where the chain
is partially inserted in the shallow region) and τ0 is the activation time. The two contributions to the free
energy difference are the potential energy gain due to electric field and conformational entropy loss due to
confinement in the shallow region. Adopting the blob model for polymers, we can express ∆F ∼ m−m2Es,
where m is the number of blobs inserted in the shallow region and Es the electric field strength in the shallow
region. Wong [73] presents a more detailed model with

∆F =
m

D1/ν
− QEsm

2

cD1/ν−1
, (48)

where D is blob diameter, Q the net charge of the inserted segment, ν the polymer size exponent (0.59
for ideal chains) and the constant c equals 2 and 4, respectively, for linear and hairpin conformations. In
a hairpin conformation, the polymer is folded on itself with both ends in the (same) deep region while
another section of the chain is partially inserted in the shallow region. The authors also propose that the
higher mobility (or shorter translocation time) of long chains can be linked to the prevalence of hairpin
translocations; linear, single-file translocations, on the other hand, are favored by short chains. Since τ0 is
proportional to the contact area between the shallow region and the chain, we have τ0 ∼ N−νD−1.
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It has been shown [55] that the dynamics of translocation across a series of traps is governed by more
than one time scale; this, in fact, leads to a non-monotonic dependence of the mobility on the chain length.
We can split the translocation time τ into the approach time τapp, activation time τact and transit time
τtran, τ = τapp + τact + τtran, which characterize, respectively, the diffusion within the spacious cavity and
the approach to the transition region, overcoming of the entropic barrier and partial penetration into the
slit and, finally, electrophoretic migration through the slit. The trapping time is then τtrap = τapp + τact.

Fig. 13 gives a qualitative picture of how the relative magnitudes of these time scales determine the
location of the maximum in µ. Apparently, two limiting types of behavior can be observed, depending
on the electric field strength and the geometric ratio hs/hl: mobility increasing with N , characteristic of
entropic constrictions [27], and mobility decreasing with N , characteristic of nanopores [37].

Fig. 13: Non-monotonic dependence of electrophoretic mobility on chain length. The crossover value N∗, corre-
sponding to the maximum in mobility, shifts to the left with the increasing average electric field strength, EAV and/or
with increasing hs/hl ratio. This reduces the activation barrier and enhances transit through the shallow region, thus
τact < τtran, making the transit time the dominant time scale determining the overall dynamics. The ’pore’ region
expands at the expense of the ’trap’ region and the mobility decreases with N throughout most of its range. Similar
arguments apply to the shift in the opposite direction.

4.2 Simulation results

The dimensions of one trap (see Fig. 12), scaled by the height hl = 3µm, are: length Lt = 1, width Wt = 0.5
and height and length ratios of shallow to deep region, respectively, hs/hl = 0.1, ls/ll = 2. These ratios
are both twice as large as those used in the original geometry proposed in [27]. The motivation for such
increase is to reduce the entropic barrier, thus increasing chain mobility and reducing computational time;
the disadvantage, however, is the reduced trapping time at the expense of transit time, which results in

decreased selectivity of separation, defined in [26] as S ≡ dµ
dN = µ0

N
τtrap/τtran

(1+τtrap/τtran)
2 , where µ0 is the free-space

mobility. We use four traps in a series with the electric field varied in the physiological range between 10 and
160 V/cm and the number of beads N varied between 11 and 76. The simulation is run for 105 timesteps or
until the center-of-mass exits the geometry, whichever occurs first, with the time step ∆t = 10−5 s and 50
realizations. We neglect hydrodynamic and electrostatic interactions between the beads (Debye screening
length κ−1 in typical buffers of ∼ 50 mM concentration is of the order of nanometers) and electro-osmotic
flow (suppressed due to wall coating).
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Fig. 14: Electric field lines in the trap. Inset: Solid line – normalized electric field strength along the midline of the
narrow region; dash dotted line – integral average EAV,1 = 1, dashed line – arithmetic average EAV,2 = 0.86.

We note that for ls/ll 6= 1, the integral average of electric field strength, EAV,1 ≡ 1/Lt

∫ Lt

0
E(x)dx will

differ significantly from the commonly employed arithmetic average of electric fields in shallow and deep
region, EAV,2. The comparison of these two averages, along with the electric field lines and the variation of
the magnitude of the electric field strength along the midline of the narrow region, is depicted in Fig. 14.

The charges in a polyelectrolyte are screened due to counter-ion condensation; the screening factor
α ≡ Qeff/Q, where Qeff is the effective charge, can be calculated for infinite dilution from the Manning
prediction, α = bc/lb, where bc = 1.7 Å is the charge spacing in DNA and lb = 7.1 Å is the Bjerrum length
for water. This yields α = 24%, which is within the range given in literature [19]. Such an estimate should,
however, be only interpreted as an upper bound, since single-molecule studies of DNA are typically carried
out in solutions with electrolyte concentration > 10 mM, where the large number of counterions adsorbed
along the chain backbone is sufficient to make the DNA chain effectively uncharged, decreasing its persistence
length and increasing flexibility [63]. Assuming the experimental free-draining mobility of a DNA chain in
a 40 mM tris-acetate buffer to be µ0 = 3.0× 10−8m2s−1V−1 [67] and adopting the Rouse model with chain
friction ζchain = Nζ, we estimate the effective charge per bead as

Qeff = µ06πηa = 270 e, (49)

where e is the electron charge. Alternatively, we can use

Qeff =
Nbp

N
×Qbp × α, (50)

where the charge per base pair Qbp is 2e and the number of base pairs Nbp is calculated from the
contour length L as Nbp = L

Rbp
≃ 62 kbp, where the rise-per-base-pair Rbp = 3.4Å. Consistency between
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Fig. 15: Bounding polyhedron with the chain of 100 beads in the initial configuration after a bounded, three-
dimensional random walk on a discrete lattice.

Eqs. (49) and (50) is achieved with screening α = 2.5%. More rigorous estimates of Qeff can be obtained
from molecular dynamics simulations after explicit introduction of counterions into the solution to guarantee
electroneutrality, as was done for short polyelectrolytes in [24].

To further reduce the activation time τapp and thus the overall computational time, we preposition
the chain in the transition region, at the interface between a thick and thin region (Fig. 15). The initial
conformation of the chain is grown on a lattice as a bounded, self-avoiding random walk. To make sure the
chain remains within the bounding polyhedron during the walk, a point-in-polyhedron and point-in-polygon
problems needs to be solved repeatedly at each step. This is done by a ray-crossing test, based on the Jordan
curve theorem: we run a semi-infinite ray from the query point and count how many faces it crosses; odd and
even number of crossings correspond, respectively, to the query point being inside and outside the bounding
volume.

Fig. 16 shows the mobility of the chain with respect to the external electric field, Eav = ∆V/L, with the
applied voltage ∆V ranging from 0.01 to 0.2 V and N from 11 to 41. The mobility in the channel can be
related to the free-space mobility, µ0, as

µ

µ0
=

τtran
τtran + τtrap

, (51)

where τtran = L/µ0Eav [27]. Since τtrap = 0 for electrophoresis in a regular channel, we obtain µ0 from
the plateau region of Fig. 16, µ0 = 2.36 × 10−8m2s−1V−1. We can then calculate the trapping time from
Eq. (51),

τtrap =
L

Eav

(

1

µ
− 1

µ0

)

, (52)

depicted in Fig. 17. The semi-logarithmic curve dependence of ln (τtrap) on 1/Eav can be fitted with a linear
function, whose slope A and y-intercept B can then be used to fit the mobility curve in Fig. 16 with an
exponential, derived from Eqs. (47) and (51), after recognizing that ∆F = A/Eav,

µ =
µ0

1 + CEavexp
A

Eav

, (53)

where B = ln (τ0) and C = µ0 exp (B) /L.

4.3 Conclusions

We observe that the two characteristic behaviors of the chain mobility in Fig. 18, one for E = 8.3 V/cm and
the other for E = 25 V/cm, are in agreement with the qualitative schematic described in Fig. 13. While the
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Fig. 16: Electrophoretic mobility, calculated as µ = 〈v〉 /Eav, vs average electric field strength. Exponential fit of
the mobility curve uses the slope and intercept of the linear fit of the trapping time curve, Fig. 17.

Fig. 17: Trapping time vs average electric field with a linear fit. For E > 50 V/cm, τtrap is small (compared to
τtrans); such data were thus discarded from the fit.
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Fig. 18: Electrophoretic mobility vs chain length. For E = 8.3 V/cm, trapping regime dominates; for E = 25 V/cm,
electrophoretic migration dominates.

mobility µ increasing with chain length is typical of entropic traps and suggests τact as the dominant time
scale, the decreasing dependence of the mobility µ on chain length identifies τtrans as the dominant time
scale, typical of channel translocation. To further quantify the behavior sketched in Fig. 13, we find that
the maximum in the mobility curve occurs for E ∼ 12 V/cm, seen in Fig. 19.

The simulations also corroborate the validity of the kinetic model presented in Sec. 4.1. Fig. 20 shows
snapshots of short (N=11) and long (N=41) chains at different times during simulation. The long chain can
expose more beads to the transition region between the deep and shallow cavities than the short chain and
is thus more likely to migrate under the influence of the electric field.

The true free-space mobility µ0 was also determined from the simulation in a cylindrical channel, yielding
a value of (2.98± 0.006)×10−8m2s−1V−1. This value naturally agrees with our starting value used in Eq. (49)
and is within 20% of the apparent plateau mobility obtained from the entropic trap array. While the average
electric fields in the channel and the trap are the same (cf. Fig. 14), the vanishingly small electric field in
the deep region cannot compete with thermal diffusion (∼ kbT/a), which is the most likely reason for the
discrepancy between the two free-space mobilities. We note that an approximate formula based purely on
geometrical dimensions of the domain and employed in [68] gives the ratio of the true and apparent free-space
mobilities as 2.8, suggesting an even larger discrepancy.

5 Polymer translocation in nanopores

The study of translocation times of polymer transport across a nanoporous membrane is another suitable
candidate for the application of the hybrid model developed above.

Analytically, the translocation process can be described as diffusion over a free energy barrier [52]. For a
Gaussian chain, the heat equation, with the time variable replaced by the number of Kuhn segments, governs
the probability distribution of the chain conformation. Given the knowledge of the specific geometry of the
translocation domain (e.g. a cylindrical pore, parallel plates or spherical cavities), pore-polymer interactions
and applied gradient in electrochemical potential that drives the translocation, this equation can be solved
and the entropy and free energy of confinement can be computed from the probability distribution using
standard methods of statistical thermodynamics. The free energy landscape, in turn, determines the drift in
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Fig. 19: Change in the monotonicity of the curve suggests transition from the free flowing behavior to the trapping
behavior. The maximum occurs for E ∼ 12 V/cm.

Fig. 20: Snapshots of short (N=11) and long (N=41) chains at time t=0.5s (left) and t=1s (right). Left: Long chain
has more beads facing the slit than the short chain and thus higher probability of transit (activation regions circled).
Right: While the long chain successfully migrated into the middle trap and nucleated into the next shallow region,
the short chain is delayed in the activation stage negotiating the free energy barrier.
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the Fokker-Planck equation governing the transition probability of a Markov process. Solving this equation
subject to absorbing boundaries (corresponding to successful translocation events) yields the transition
probability, which in turn can be related to the probability distribution function of the first-passage times
(FPT) and its first moment, the average translocation time [43]. The probability distribution function of
the FPT is skewed – it rises sharply to a maximum and then decreases roughly algebraically. As expected,
it is also compressed to shorter times for higher translocation velocities (or, equivalently, stronger driving
forces). The translocation can, however, only take place after the free energy maximum has been crossed,
i.e. a sufficient number of monomers has been inserted into the channel. In some experimental setups, such
as entropic traps (Sec. 4.1), this activation process can be a rate-determining step; the nucleation theory
of phase transitions then provides a qualitatively reasonable description. Once the nucleation barrier is
surmounted, the average translocation time 〈tD〉 is found to be proportional to the chain length and inversly
proportional to the driving force ∆µ (such as voltage difference ∆V applied across the pore),

〈tD〉 ∝ N

∆µ
. (54)

The assumption of quasi-equilibrium implicit in the translocation theory can be violated for chains of large
molecular weights, whose relaxation times exceed those of translocation. The simulations of uncharged chains
in non-equilibrium conditions suggest 〈tD〉 ∝ Nα, α > 1, where different values of the size exponent α have
been proposed in the literature depending on the experimental conditions (see [52] for summary).

Computationally, the translocation is typically addressed using molecular dynamics [3, 47] or Monte
Carlo simulations [44]. When the interest is in the translocation phase only (rather than capturing and/or
activation), then the chain is typically pre-positioned into a confined region of radius equal to the free
solution radius of gyration of the chain [19], or the terminal bead tethered to the pore entrance during
equilibration [70, 32]. We follow the latter approach of bead tethering. Experiments and theory (assuming
Arrhenius form of the activation time) suggest that the activation time decreases with chain length for
long chains (due to prevalence of hairpins) and increases with chain length for short chains (due to single-
file conformations) [73]. The effects of hairpins on translocation time tD have been found to be due to
the following phenomena: 1) more strands with more beads in the pore result in larger electrostatic force
(tD decreases); 2) folded hairpin effectively shortens the chain length (tD decreases); 3) hairpins increase
frequency of bead-bead and bead-wall collisions leading to increased friction (tD increases). In a simulation,
tD can be determined 1) by having the chain associated with a clock that starts when the first bead enters
the pore, resets when chain fluctuates back to the cis side (to exclude unsuccessful translocation attempts)
and stops when the last bead exits the pore on the trans side [70], or 2) by monitoring the duration of
blockades of the channel current [51, 49]. Alternatively, escape from the pore can be monitored instead of
the translocation, since the escape and translocation times follow identical scaling [32].

5.1 Simulation Setup

In the following we compare two solution methodologies: a coarse-grained (CG) CLEPS [54]-like model
developed in Sec. 2 with mesoscale treatment of forces and a fine-grained (CG) molecular dynamics model
with the more fundamental atomistic potentials. We assume interaction between the biological membrane
and polymer to be only of steric origin [69]; the surface of the pore is uncharged so as to prevent electroosmotic
flow, allowing us to isolate the effects of hydrodynamic interactions. Following Matysiak [47], we take α-
hemolysin protenacious pore embedded in lipid membrane as a prototypical model of a biological pore, with
pore length L = 48 Å, pore diameter D = 15 Å, and with deionized water at room temperature as the
solvent. The simulation was preceded by equilibration over 25 Rouse times (i.e. 2000∆t, where ∆t = 0.1ps),
with the pore closed (artificial wall imposed at the pore entrance), electric field turned off and terminal bead
tethered to the center of the pore entrance. The initial polymer conformation was a zig-zag or, alternatively,
it was grown on a lattice with step size b0 as a self-avoiding random walk (SARW) bounded by a region of
the radius equal to the bulk radius of gyration of the chain. No statistically significant difference was found
with sufficient equilibration. After equilibration, the tethering was released, pore opened and electric field
turned on. The results were averaged over 800 realizations.
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5.1.1 Coarse-grained model

The forces acting on the beads are: frictional, Brownian, wall force (Aw = 40kbT, δw = bk/2
√

q0/bk ≈ 0.4L),
Marko-Siggia spring force and excluded-volume force.

The coarse-graining of the ssDNA chain (Poly(dA))is based on the following Matysiak’s parameters [47]:
monomer mass mm = 312 amu, number of monomers (bases) Nm ∈ 〈10, 100〉 and base-to-base distance
(monomer diameter) a = 4 Å, which yields contour lengths l = Nma ∈ 〈40, 400〉 Å. Assuming Nks = 10
Kuhn segments per spring and Kuhn length bk = a = 4 Å, we obtain:

• maximum spring extension q0 = Nksbk = 40 Å,

• excluded volume interaction parameter v ∝ b3k = 64 Å3, and

• initial bond length b0 = bk
√
Nks = 13 Å.

For Nm ∈ 〈10, 100〉, the number of springs is Ns = l/q0 = Nmbk/q0 = Nm/Nks ∈ 〈1, 10〉. The remaining
parameters are a function of the number of beads, Nb = Ns + 1: bead mass, radius and charge.

• For bead mass, we have mb = NksNsmm/Nb ≈ 10mm = 3120 amu.

• To obtain bead radius ab, we assume θ-solvent and the worm-like chain being in the ideal chain limit,
so that R2

g = 〈R2〉0/6 = lbk/6. To illustrate, for Ns = 1, i.e. l = Nsq0 = 40 Å, we calculate intrinsic

viscosity [η]0 = Φ〈R2〉3/20 /M , where the Flory-Fox parameter Φ = 1.67×1023 [40] and molecular weight
M = Nmmm = Nbmb. This yields the longest Rouse relaxation time τ1 = [η]0Mηs/(RTπ

2/6) = 0.08
ns, where solvent viscosity ηs = 1× 10−3 Pa·s. Using the Rouse model further, we get the bead drag
coefficient ζb = 24kbT sin2(0.5π/Nb)τ1/b

2
0 = 2.56 × 10−12 kg/s, where the number of beads Nb = 2.

Finally, using the Stokes expression we get bead radius ab = ζb/(6πηs) = 1.36 Å.

• For bead charge, we have Qb = NksNsqm/Nb, where the monomer charge qm = 0.4e (an optimal
value obtained in [47] by fitting the translocation time dependences to experimental data). The total
charge conservation and total mass conservation (see above) thus hold between both coarse-grained
and fine-grained models.

5.1.2 Fine-grained model

The relevant molecular dynamics parameters are taken from Matysiak [47]. The polymer is represented by
a finer-grained pearl-necklace model whose beads now represent the DNA bases as the relevant repeat units.
The Marko-Siggia spring is replaced by harmonic bond and harmonic angle potentials, the excluded-volume
force is replaced by the repulsive part of the Lennard-Jones potential and the wall force is replaced by the
full Lennard-Jones potential. The effects of Langevin thermostat are mimicked by the Brownian dynamics
forces, which include both drag and random components.

5.2 Simulation Results

In this section we report the dependences of the pore translocation times on molecular weight (which is
proportional to the number of beads) and voltage differences applied across the pore. Further we compute
electrophoretic mobilities both in the pore and in free solution and show the dependences on molecular
weight and Peclet number (Pe = qmq0∆V/(LkbT )).

To exclude unsuccessful translocation attempts from the statistics, the translocation time tD is determined
as in [70]: the clock associated with each chain is on whenever at least one bead is inside the pore, and is
reset whenever the chain fluctuates back to the donor compartment leaving no monomers in the pore.

For the coarse-grained (CG) model, Fig. 21 shows the dependence of the translocation time on the number
of beads Nb. We observe superlinear scaling for the ratio of polymer length to pore length l/L ≤ 0.12 and
linear scaling for l/L > 0.12, i.e. the size exponent α exhibits a marked decrease around this threshold ratio,
which corresponds to Nb = 3. A similar trend was observed in an experiment by Meller [49], who observed
translocation velocity rapidly decreasing with Nb for short chains and slowly decreasing, almost constant, for
long chains. The rationale for such behavior can be found in the nucleation theory of translocation [52], which
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Fig. 21: Translocation time vs number of beads (CG model) showing two translocation regimes.

gives the nucleation time as the reciprocal of the nucleation rate determined from free energy arguments.
The theory correlates the decrease in the size exponent with the decrease of the nucleation time. As in the
entropic traps, the longer chain in a folded conformation exposes more of its contour to the pore entrance
compared to a short chain, increasing the likelihood of crossing the free energy barrier and proceeding to
translocation. The transition in Fig. 21 is less obvious for large voltage gradients, which is likely due to the
prepositioning of the chain at the pore entrance: the energy barrier decreases with the increasing driving
force, making it less likely for the chain to relapse to the donor compartment after partial insertion into
the pore. The translocation time then dominates the activation time and determines the dynamics of the
transport. Fig. 22 depicts the translocation time dependence on the voltage difference ∆V applied across
the pore, where ∆V varies between 20 and 340 mV. By fitting the above dependences to experimental data,
the choice of adjustable parameters ζ and qm can be iteratively improved. Fig. 23 depicts the distribution
of the translocation times ψ(tD), which shows an asymmetric, right-tailed distribution with positive skew,
as predicted by the theory [52] and confirmed by experiments [47].

For the fine-grained (FG) model, the monomers and coarse-grained beads coincide. Fig. 24 shows the
dependence of the translocation time tD on the applied voltage difference ∆V , where ∆V varies between 100
and 340 mV. Only the linear scaling of the translocation time with Nb is now observed over the studied range
of molecular weights, as expected for negligible activation time due to strong driving force. Compared to the
results of the coarse-grained model, we observe increase in translocation time by a factor of 10, corresponding
to a proportional increase in the friction coefficient. This leads to enhanced chain retardation in the pore,
presumably due to a more realistic wall potential, which now includes van der Waals attraction, and due to
the increased number of structural units interacting with the wall.
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Fig. 24: Translocation time vs applied voltage (FG model)

When comparing our translocation times of the coarse-grained (Fig. 22) with the experimental values [49],
we observe a difference of about 4 orders of magnitude, which corresponds to the difference in the friction
coefficient used, as confirmed in Fig. 25: while matching the friction coefficient to the experiment yields
ζ = 1×10−8 kg/s, the one used in the simulation (based on the Stokes-Einstein relation) yields ζ = 3.8×10−12

kg/s. The reason for this discrepancy is presumably the absence of counterion-driven electroosmotic flow
in our model, which increases the effective friction leading to electrophoretic retardation. Furthermore, as
suggested by analytical corrections to the effective drag coefficient [74] derived in the context of hindered
diffusion, we also expect a contribution to the friction coefficient arising from wall-mediated hydrodynamic
interactions. While the velocity disturbance generated by the counter-ion charge density can be included in
the Navier-Stokes equation 16, we account for both effects in our Brownian dynamics model in [29].

For comparison and scaling, we also performed electrophoretic simulations in free solution with the fine-
grained model. The translocation time tD was now based on the movement of the center-of-mass and the
electric field was active everywhere in the domain. The initial conformation of the chain is unbounded self-
avoiding random walk and no equilibration is performed. Fig. 26 shows the dependence of the translocation
time in pore and in free solution on chain length for a range of Peclet numbers. We observe that the velocity
(and, by extension, electrophoretic mobility) is independent of chain length in the bulk solution as consistent
with Rouse dynamics for high salt concentrations of the solvent. In the pore, however, the translocation time
undergoes the transition from the supralinear to linear regime and continues to increase with chain length,
which can be explained by the monotonically increasing bead-wall collision frequency for longer chains.

Fig. 27-28 show the chain length dependence of the electrophoretic mobility in pore and free solution.
While mobility decrease with increasing chain length is consistent with similar findings of free-draining
molecular dynamics simulations of short chains [23], it contradicts experimental results, which confirms
non-negligible influence of hydrodynamic interactions.

To explore the effects of hydrodynamic interactions on the electrophoretic mobility, we applied the coarse-
grained hybrid model to short chains, withNb = 1 . . . 5. By measuring the Stokeslet velocity field generated in
response to a point force, we determined the friction renormalization correction, ζcorr ≡ ζeff/ζStokes−Einstein,
to be 0.59. The scaled electrophoretic mobility in the pore again confirmed independence on Pe, but now
also showed almost no dependence on the number of beads Nb for all voltages in the range between 160 and
360 mV, with µpore/µ0 ≈ 0.05. Such behavior is indeed closer to the observed experimental dependence,
which saturates at a constant value after a few base pairs [23].
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Fig. 29: Kang’s DEP separator, 2D projection. Obstacle in the middle; ports A and D are outlets for separated
particles, port B delivers a mixture of variable-sized particles, port C introduces buffer solution. Streamlines and
contours of the electroosmotic velocity field denoted in red and black, respectively. Magnitude of the field color-coded
with warmer colors corresponding to higher velocities. Due to the similitude between velocity and electric field, the
same picture is also qualitatively correct for the electric field strength.

A iDEP-based particle separation

Kang’s device [36] features an insulating obstacle of a rectangular cross-section, not unlike those used in
entropic traps (Fig. 29). Aside from the drag force, particles experience electrophoretic (EP) and dielec-
trophoretic forces, governed by Eq. (5) and (6), respectively. The underlying electroosmotic (EO) flow, uEO,
can be determined by three different approaches, listed in the order of increasing complexity: (i) similitude
between uEO and E, i.e. u = µE with µ being the characteristic mobility; (ii) steady-steady Navier-Stokes
equation subject to the Helmholtz-Smoluchowski slip boundary condition of the form of (i); (iii) same as (ii),
with the slip boundary condition replaced by no-slip and an additional electric body force term appearing in
the governing equation, fEL = ρfE, where ρf is the volumetric free-charge density. The equivalence of (ii)
and (iii) in the limit of a thin EDL can be shown by van Dyke’s asymptotic matching of the inner solution in
EDL to the outer solution in the bulk electrolyte. Since (ii) effectively replaces EDL with a slip boundary,
it assumes a thin EDL, κa≫ 1, while (iii) additionally assumes uniform wall potential, insulating walls and
low Re and ReSr [59], where Sr is the Strouhal number. Note that while vorticity is generated at the walls
(and particle locations, if HIs are taken into account), the curl of the electric body force confines it only
to EDL; vorticity in the bulk is thus canceled, as consistent with the Helmholtz-Smoluchowski plug flow.
The cubic dependence of particle size on the magnitude of negative DEP force, Eq. (6), indicates that larger
particles will experience stronger repulsion from electric field maxima near the leading corner of the obstacle.
This induces cross-wise migration to the neighboring streamlines with an increased likelihood of terminating
in the upper outlet. Shape and dimensions of the geometry, as well as the applied voltages, allow one to
tune the separation properties of the device as needed.

A heuristic correction factor c, determined by matching simulation results to the experiment, has been
suggested [36] and used [75] to account for finite size of particles and possibly other effects. While the authors
simulated tracers in 2D, we found that c, which pre-multiplies the right-hand side of Eq. (6), is sensitive to
the neglect of particle inertia and dimensionality reduction; while treating particles as tracers required using
3c to achieve the same separation as for the inertial particles, reduction from 3D to 2D required the use of
2c. The results for the dimensionality reduction will, however, depend strongly on edge effects and therefore
on the aspect ratio. Since [36] does not discuss dimensions of the device, we used a length to width ratio of
8; the overlapping grid used for the computation is depicted in Fig. 30.

Motivated by the effort to minimize the number of adjustable parameters, we instead attempt to quantify
these effects more precisely, starting with a DEP force formula more general than Eq. (6), based on multipole
expansion. Note that equivalent expression can be obtained by integrating the Maxwell electric stress tensor,
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Fig. 30: Kang’s DEP separator, 2D projection, overlapping grid used for the finite-difference discretization.

Te = −1/2ǫfE
2n + ǫfE (E · n) over the surface of the particle. The n−th multipolar contribution can be

expressed as [35]

F
(n)
DEP =

4πǫfa
2n+1

(n− 1)! (2n− 1)!!
K

(n)
CM (∇)n−1E[·]n(∇)nE, (55)

where (2n− 1)!! ≡ (2n− 1) · (2n − 3) · . . . · 5 · 3 · 1 and [·]n means n dyadic multiplications. Using Einstein
summation convention (all repeated indices are summed), the first two terms of the i-th component of the
force, dipole and quadrupole, are then

(FDEP )i = 4πǫfa
3

{

−1

2
Em

∂Ei

∂xm
− 1

9
a2Em

∂En

∂xm

∂2Ei

∂xn∂xm
− . . .

}

. (56)

Note that the dipole can be written in the more familiar form as the product of the effective induced dipole
moment peff = 4πǫfa

3KCME and the gradient of the electric field,

F
(1)
DEP = (peff · ∇)E = 2πǫfa

3KCM · ∇|E|2. (57)

For the geometry depicted in Fig. 29, with voltages A = 20, B = 850, C = 900 and D = 0 V, κ = 105

m−1 and a = 15 µm, we found the quadrupolar correction, defined as the ratio of the magnitudes of the
consecutive multipoles, cQ ≡ F (2)/F (1), to be about 10%. Since [36] reported c of 60-70%, more research is
needed to identify other possible contributions. Obviously, the correction depends on the particle radius a
(quadratically), as well as electric field non-uniformities, external voltages and geometry.
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