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Abstract

We extend the kinetic theory of dilute polymer solutions under
external pressure and electric fields [10] to a) include finite chain ex-
tensibility and b) properly account for wall-induced hydrodynamic in-
teractions due to charged polymers in an electrolyte. Focusing on
cross-stream migration due to individual and combined effects of these
fields, we conclude that the thickness of the depletion layer is over-
predicted by the Hookean spring model and scales quadratically with
the Peclet number, similar to the dependence on Weissenberg number
reported in shear flows. We show the variation of molecular stretch
and normal stresses across the channel and derive migration tensors
for the Green’s function of Stokes flow in a Debye-Hückel electrolyte.

Keywords: kinetic theory, cross-stream migration, Poiseuille flow, elec-

tric field, polyelectrolyte

1 Introduction

Constitutive theories of dilute polymer solutions fail to capture some impor-
tant phenomena arising in non-homogeneous flows with spatially nonuniform
velocity gradients and stresses. Polymer migration, for instance, can instead
be treated with sufficient accuracy in terms of the phase-space kinetic theory,
which describes a molecular model of the polymer in terms of a configura-
tional distribution function [1]. The theory has recently been extended to
include a wall correction in the hydrodynamic interaction tensor due to a
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point force acting near a planar wall [13] and subsequently, using a Hookean
spring model in pressure-driven flow, to account for the wall-induced hydro-
dynamic interactions arising from a unidirectional external force [9]. Such
force typically represents gravity (in sedimentation studies) or electric field
(in DNA electrophoresis). The use of an infinitely extensible spring, how-
ever, is a severe approximation which can yield incorrect rheological prop-
erties [2], especially in flows with significant stretching. Furthermore, it has
been shown [17] that in confinement, the spring laws are different due to
the broken symmetry of the underlying random walk representation, with
the net effect being a reduced extensibility of the chain. This motivates an
extension of the above study to a FENE model with adjustable stiffness. An-
other deficiency of the existing theory for polyelectrolytes is the absence of
wall corrections for point charges immersed in an electrolyte and surrounded
by counter-ion clouds, which precludes correct prediction of cross-stream mi-
gration patterns, especially when the Debye length is finite. We thus develop
a model which addresses the above deficiencies and apply it to electrophore-
sis where hydrodynamic interactions (HIs) are assumed to be only partially
screened, in agreement with recent experimental findings [9].

The layout of this paper is as follows. After reviewing the basic kinetic
theory equations in Sec. 2.1 and 2.2, we show conditions under which an
external force can be treated within the standard kinetic theory model in
Sec. 2.3. Also in Sec. 2.3, we derive an orientational distribution function
(ODF) for a potential flow of FENE dumbells with wall-induced migration
due to a general external force. Then in Sec. 3.1 we specialize to a Poiseuille
flow (characterized by a Weissenberg number Wi) and unidirectional force
(characterized by a Peclet number Pe), showing an explicit form for the
ODF as well as the differential equation governing the center-of-mass distri-
bution function (CDF). Sec. 3.2 discusses the limitations and applicability
of the employed theory, which is then applied in Sec. 3.3-3.5 to examine
cross-stream migration due to separate and combined effects of imposed
flow and external force. In Sec. 3.6-3.7 we discuss the dependence of the
depletion layer, normal stress differences and molecular stretch on Wi and
Pe. In Sec. 4.1 we discuss the image system for the electrophoretic Stokeslet
(ES), which represents a point-force disturbance due to charged beads in an
electrolyte under Stokes flow. First we show the conditions under which
the image system for the standard Stokeslet (which decays with distance as
1/r) can be used in place of the ES (which decays as 1/r3). Then we restrict
ourselves to the long-range part of the ES and derive the corresponding mi-
gration tensors based on the image system for a potential dipole, which
produces an equivalent disturbance field. Sec. 4.2 presents migration results
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for the ES, analogous to those in Sec. 3.3-3.5.

2 Background

Dumbell models are simplified representations of polymer molecules. While
the limited number of internal degrees of freedom restricts their use to low-
frequency flows, they have been shown to provide valid predictions of rheo-
logical properties in non-Newtonian fluids [2] and allow for tractable analysis
of polymer migration in confined geometries.

A dilute polymer solution is thus modeled by a suspension of non-
interacting dumbells immersed in a continuous Newtonian solvent of viscos-
ity η. The two spring-connected beads of a flexible dumbell follow equations
of motion, which combine with a continuity equation to yield the Fokker-
Planck equation of the kinetic theory.

2.1 Equations of motion and continuity in the kinetic theory

Denoting the bead position vectors of the dumbell as r1 and r2, we can
write continuity equations for the positional and orientational distribution
functions n(rc) and ψ(rc,Q), respectively, as

∂

∂rc
· (〈ṙc〉n) = 0,

∂

∂Q
· (Q̇ψ) = 0, (1)

where the center-of-mass rc = (r1 + r2)/2 and the bond vector Q =
(q1, q2, q3) = r2 − r1 provide a convenient coordinate system and 〈·〉 de-
notes an ensemble average with respect to ψ, i.e. 〈·〉 =

∫

·ψdQ.
The force balance between the Brownian F b, spring F s, electric F e and

hydrodynamic forces F h yields the velocity of the i-th bead, which can be
rewritten in terms of the center-of-mass ṙc and bond vector Q̇ velocities,
with the imposed velocity field Taylor-expanded around rc to quadratic
order inQ. The experiments [6] and simulations [13] confirmed the existence
of near-wall depletion layers of thickness much larger than the polymer size,
justifying the neglect of a steric wall force from the force balance. After
substituting F b = −kbT ∂ lnΨ

∂r , where Ψ(rc,Q) = n(rc)ψ(rc,Q), kb is the
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Boltzmann constant and T is temperature, one obtains [5]

ṙc = u+
1

8
QQ : ∇∇u+

1

2
Ω̄ · F s +

2

kbT
DK · F e +

kbT

2
Ω̄ · ∂ lnΨ

∂Q
−DK · ∂ lnΨ

∂rc
,

Q̇ = Q · ∇u−
(

2µI + Ω̂
)

· F s − ¯̄Ω · F e − kbT
(

2µI + Ω̂
)

· ∂ lnΨ
∂Q

+
kbT

2
¯̄Ω · ∂ lnΨ

∂rc
,

(2)

where DK , Ω̂, Ω̄ and ¯̄Ω are linear functions of the HI tensor

Ωij ≡ (1− δij)Sij +Gij , (3)

with the Oseen-Burgers Stokeslet S, wall correction G and Stokes friction
coefficient µ−1 = ζ. The above functions of the HI tensor are discussed
further in our previous work [8]. To simplify subsequent computations,
the wall correction tensor G, which is based on the superposition of two
fundamental solutions to Stokes equation due to Blake [3] near two planar
boundaries, is linearized around rc to arrive at Ω̂, Ω̄ and ¯̄Ω which are linear
in Q. The equations of motion (Eq. 2) then serve as a starting point for
further analysis of cross-stream migration phenomena in a slit.

2.2 Fokker-Planck equation for the orientational distribution

function

For simplicity and following [9], the only HI tensor retained in the continuity
equation (Eq. 1) is the ¯̄Ω·Fe term, which is essential to capture the migration
due to external force. The terms in the expression for the bond vector
velocity in Eq. 2 that contain Ω̂ and ¯̄Ω are neglected. Using Eq. 2, we thus
obtain

0 =
∂

∂Q
·
[

(κ ·Q)ψ − 2kbTµ
∂

∂Q
ψ − 2µFsψ − ¯̄Ω · Feψ

]

, (4)

where κ ≡ (∇u)T is the gradient of the imposed velocity field.
Our goal is to solve Eq. 4 first for a general homogeneous flow u = κ ·Q

and a nonlinear FENE spring force, where Fs = a(Q)Q, with

a(Q) =
H

1−
(

Q
Q0

)2 , Q = |Q|, (5)

Hookean spring constant H and maximum spring extension Q0.
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Eq. 4 is a stationary Fokker-Planck equation, 0 = LFPψ, where the
Fokker-Planck operator is

LFP = − ∂

∂Q
·D(Q) +

∂

∂Q
· ∂

∂Q
∆(Q), (6)

with possibly nonlinear drift vector

D(Q) = κ ·Q− 2

ζ
a(Q)Q− ¯̄Ω · Fe, (7)

and constant diffusion tensor

∆(Q) =
2kbT

ζ
I, (8)

where we denote ∂
∂Q ·D(Q) =

∑

i
∂
∂qi
Di(Q).

With linear drift and constant diffusion, the distribution function ψ will
be Gaussian [9]. An analytical solution can be found even for nonlinear drift,
provided that the condition detailed balance is satisfied [15]. Expressed in
terms of potential conditions,

∂Di

∂qj
=
∂Dj

∂qi
, (9)

the solution, up to an integration constant, is then

ψ = e−φ(Q), (10)

where the potential function

φ(Q) = − ζ

2kbT

∫ Q

Di(Q
′)dq′i (11)

and the Einstein summation convention is invoked.

2.3 External force

Assuming uni-directional electric force F e = F ee1 and given the lineariza-
tion discussed in Sec. 2.1, we have the components [ωij ]1≤i,j≤3 of

¯̄Ω all linear
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in Q, i.e. we can write ωij =
∑3

k=1 α
i,j
k qk. Then

[

¯̄Ω · Fe
]

i
=





3
∑

j=1

(

3
∑

k=1

αi,j
k qk

)

Fj





i

=





3
∑

k=1





3
∑

j=1

αi,j
k Fj



 qk





i

=

[

3
∑

k=1

µikqk

]

i

= [µ ·Q]i , for i=1,2,3. (12)

Thus, when the action of ¯̄Ω on the external force yields a linear transforma-
tion in Q, we have ¯̄Ω ·Fe = µ ·Q, and the first and last terms in Eq. 7 can
be combined to give

κ̂ ·Q, where κ̂ ≡ κ− µ. (13)

This part of the drift then describes the influence of the non-equilibrium
phenomena (flow and external forces), while the remaining term, associated
with F s, can be explicitly evaluated by use of Eqs. 10 and 11 to give the
equilibrium distribution function ψeq. We thus obtain the standard form of
ψ valid for a steady-state potential flow [2], ψ = ψeqφfl, however with κ in
φfl replaced by κ̂; note that φfl ∝ eκ̂:QQ is a dimensionless factor which
contains information about the flow pattern.

With the linearized ¯̄Ω of the form,

¯̄Ω = λ(y)





−qy qx 0
−qx −2qy −qz
0 qz −qy



 , (14)

we obtain a traceless, symmetric dyad

µ = λ(y)





Fy −Fx 0
−Fx −2Fy −Fz

0 −Fz Fy



 . (15)

Using the chain rule and the identities ∂
∂Qa(Q) = Q

Q
d
dQa(Q) and ∂

∂Q · (τ ·
Q) = Tr(τ ), we can now rewrite the Fokker-Planck equation (Eq. 4) as

2kbT

ζ

∂

∂Q
· ∂

∂Q
ψ −

(

κ̂ :
∂ψ

∂Q
Q

)

+
2a

ζ
Q · ∂ψ

∂Q
+

2

ζ

[

Q
da

dQ
+ 3a

]

ψ = 0. (16)
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For κ̂ = κ̂T and the FENE spring force, the potential conditions are
satisfied and ψ can be obtained directly from Eqs. 10 and 11. Thus for
potential flow of FENE dumbells with wall-induced HIs, we have

ψ = ψeqφfl =
1

J

(

1−
(

Q

Q0

)2
)b

eζM , (17)

where J is the normalization constant, b is the stiffness ratio of time con-
stants describing FENE (λQ) and Hookean (λH) dumbells,

λQ =
ζQ2

0

12kbT
, λH =

ζ

4H
, b ≡ 3

λQ
λH

=
HQ2

0

2kbT
, (18)

and

M = q2x(κ11 − λFy) + q2y(κ22 + λ2Fy)− q2z(κ11 + κ22 + λFy)

+ 2qxqy(κ12 + λFx) + 2qxqzκ13 + 2qyqz(κ23 + λFz). (19)

3 Stokeslet in neutral solution

3.1 FENE model with wall-induced HIs and external force

To relax the potential flow requirement we expand the distribution func-
tion, given in Eq. 17, in a perturbation series in the powers of the velocity
gradients. Retaining the first two corrections, we obtain the same form
as Bird [2], however with the rate-of-strain γ̇ and vorticity ω tensors now
expressed in terms of κ̂, yielding the final form

ψ = ψeq(1 + φ1 + φ2 + . . . ) =
1

Jeq

[

1− Q

Q0

2]b/2
(

1 + Z(γ̇ : QQ)

+ Z2

[

− Q4
0

b5,1b7,1
(γ̇ : γ̇) +

4Q2
0

b7,2

(

1− 1

2

(

Q

Q0

)2
)

({γ̇ · ω} : QQ) +
1

2
(γ̇ : QQ)2

]

+ . . .

)

,

(20)

where b[i,j] ≡ i + jb, Jeq =
π3/2Q3

0
Γ(b1,1)

Γ(b 5
2
,1
) , Γ is the gamma function and

Z = ζ
8kbT

.
Note that κ is not required to be position-independent, allowing for

non-homogeneous flows. Assuming plane Poiseiulle flow with an effective,
position-dependent shear rate γ̇(y) = 2¯̇γ

(

1− 2 y
h

)

, where ¯̇γ is the mean shear
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rate, y is the orthogonal distance of the center-of-mass from the channel wall
and h is the channel height, we obtain the non-dimensionalized distribution
function

ψ = G(1−Q2)b
(

b5,2b7,2 + 2(P1 + 2P2)
(

b5,2b7,2qxqy +
(

−1 + b5,2(−2 +Q2)q2y

+ b5,2q
2
x

(

2−Q2 + b7,2q
2
y

))

P1 +
(

−2 + 2b5,2b7,2q
2
xq

2
y

)

P2

))

,

(21)

whereG(b) =
Q3

0

Jeqb5,2b7,2
, P1 = 3WiQ

(

1− 2 y
h

)

and P2 =
9

256Pe
(

1
y2

− 1
(y−h)2

)

.

The Weissenberg numberWiQ is defined in terms of the FENE time constant
λQ as WiQ = λQ ¯̇γ and the Peclet number Pe is based on the magnitude of

the external force F e, Pe = F ea
ζD0

, where a is the bead radius and D0 =
kbT
2ζ .

While the natural length scale here is Q0, we would like to allow for the
comparison with the results for a Hookean spring [9]. Therefore, throughout

the rest of the work all the lengths (Q, y, h, a) are scaled by Rg =
√

3kbT
4H , the

equilibrium radius of gyration for the Rouse chain [2]. This necessitates the

inclusion of the rescale factor R = Q0/Rg =
√

8
3b in the equations below.

Note that with the length scale Rg, WiQ = R2

4 WiH , where WiH = λH ¯̇γ is
defined in terms of the Hookean time constant λH .

To further facilitate comparison with the previous theoretical study [9],
we note that the fluid Peclet number PeKf and the Peclet number PeK used

in [9] reduce, respectively, to PeKf = 6Wi and PeK = Pe/a, where hereafter
we set Wi = WiH . The values of Wi and Pe used in the plots of the
center-of-mass distribution correspond, respectively, to the values of PeKf
and PeK used in the study. Similarly, we set the channel height and bead
radius to the same values as used in the numerical simulations of multi-bead
chains [9, 16], i.e. h = 8 and a = 1

8 (which corresponds to the hydrodynamic
interaction parameter [11] h∗ = a/

√
π ≈ 0.07). We scale the center-of-mass

concentration n(y) by its average, nt =
∫ h
0 n(y

′)dy′, effectively normalizing

it, i.e.
∫ h
0

n(y′)
nt

dy′ = 1. The FENE model results were obtained with the
ratio b = 1, which characterizes a stiff polymer chain with limited flexibility.

In a steady state, the flux of the center-of-mass probability distribution
function n(rc) normal to the wall must vanish; using Eq. 2, we obtain

n〈ṙc〉 · ey = 0 = f(b, y, h, a,Wi, Pe)

=
9

8
baλ〈A(q2x − 2q2y + q2z)〉+

3

4
Pe〈Ŝyx〉

− 3

4
a
∂

∂y
〈Ŝyy〉 −

(

1 +
3

4
a〈Ŝyy〉 −

9

4
aω

)

∂

∂y
lnn, (22)
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where A = A(Q) = 1
R2−Q2 , λ = λ(y, h) = 1

y2
− 1

(y−h)2
, ω = ω(y, h) = 1

y− 1
y−h ,

and the non-dimensionalized Stokeslet Ŝ(Q) = 6πηRgS = 1
Q

(

I + QQ

Q2

)

.

The first term in Eq. 22 can be written more generally as 〈 ¯̄Ω · Fs〉 (as
in [9]) or as a double dot product of a third order constant migration tensor
M and a polymeric contribution to the stress tensor τp, yielding M : τp

(as in [13]).

3.2 Applicability of the perturbation series solution

Since the perturbation series expansion of the distribution function is around
the equilibrium distribution, the convergence rate deteriorates as the Weis-
senberg and Peclet numbers increase, while slows flows show good conver-
gence [2]. For strong flows (large Wi and/or Pe), stiff springs (b → 0),
small bond vector (Q→ 0) and/or polymer center-of-mass close to the walls
(y → 0, h), the function becomes negative in the corresponding defective
region. This increases error in the ensemble averages of quantities that are
non-negligible in the defective region, namely components of S. One conse-
quence is a proportionate deviation of the diffusivity (see below) from unity.

While a finite depletion layer thickness (discussed in Sec. 3.6) effectively
excludes the polymer from the near-wall regions for large enoughWi and Pe,
the ranges of Wi and Pe have to be restricted to ensure convergence. The
near-wall regions are thus excluded from integrals over the channel height.
We further confirmed that the negativeness of the distribution functions
depends only weakly on both Pe and Wi.

3.3 Migration due to flow

For convenience, in the pressure-driven flow (plane Poiseiulle flow) we set
the transverse diffusivity (coefficient of the last term in Eq. 22) to unity.
This approximation, which prevents the diffusivity from becoming negative
near the walls due to the use of approximate HI tensors (Sec. 3.2), has been
shown to lead to a small qualitative difference in the concentration profiles
near the centerline [9]. Neglecting the diffusivity gradient ∂

∂y 〈Syy〉 for the
moment and setting the external force to zero (Pe=0), we solve Eq. 22 by
separation of variables to, yielding

n(y) = n̂(W ) = C exp

[

−81Na

8

(

h

W
+

4

h
ln(W )

)

Wi2
]

,

9



0 1 2 3 4
0.00

0.05

0.10

0.15

y
`

n
Hy`
L

nt

Wi=5.

Wi=2.5

Wi=0.

0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

y
`

n
Hy`
L

nt

Wi=5.

Wi=2.5

Wi=0.

Fig. 1: Center-of-mass distribution for different Wi. No external force, diffusivity
gradient neglected. Left: FENE spring model, right: Hookean spring model.
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Fig. 2: Center-of-mass distribution for different Wi. No external force, diffusivity
gradient included. Left: FENE spring model, right: Hookean spring model.

where N(b) =
Γ(b 5

2
,1
)b7,5

Γ(b 9
2
,1
)b7,2

and W = y(h − y) (a scaled velocity profile of the

Poiseiulle flow). Scaling n by nt eliminates the constant of integration C.
In Fig. 1, we see the characteristic depletion layer at the wall and a

uniform distribution near the centerline. When the diffusivity gradient is
included, we observe the typical dip along the centerline (confirmed both ex-
perimentally and in simulations [13]), reflecting polymer migration towards
the wall, Fig. 2. This phenomenon is addressed further in our Brownian
dynamics simulations [8]. The corresponding plots for the Hookean spring
model in Figs. 1 and 2, suggest that a linear spring model severely over-
predicts the thickness of both the depletion layer and the transition layer
between the depletion layer and the bulk region. Additionally, the concen-
tration in the bulk region is in fact much closer to the uniform concentration
(corresponding to the equilibrium Wi = 0) than the Hookean spring model
indicates.
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Fig. 3: Center-of-mass distribution for different Pe. No imposed flow. Left: FENE
spring model, right: Hookean spring model.

3.4 Migration due to external force

To explore the effects due to the external force only, we set Wi = 0. For
simplicity, and in agreement with the assumption of near-wall region exclu-
sion, we neglect terms proportional toW−n, where n ≥ 3. Equation 22 then
gives

n̂(W ) = exp

[

−75Mh

4W
Pe2

]

,

where M(b) =
Γ(b 5

2
,1
)

Γ(b3,1)R
√
π
.

In Fig. 3 we see the development of the depletion layer with the thickness
proportional to Pe, for both FENE and Hookean spring models, respectively.
The depletion layer is again over-predicted by the linear spring model.

3.5 Migration due to flow and external force

With both the pressure flow and external force included, the migration to-
wards the centerline will be either enhanced (flow and force in cooperation,
Pe < 0, Fig. 4) or reduced (flow and force in competition, Pe > 0, Fig. 5).
Neglecting the diffusivity gradient and the terms proportional toW−n where
n ≥ 3, Eq. 22, rewritten in terms of W , reduces to

∂ ln n̂(W )

∂W
=

3M

5h
WiPe+

75Mh

4W 2
Pe2 +

81Na(h2 − 4W )

8hW 2
Wi2. (23)

The solution is then

n̂(W ) = exp

[

3MW

5h
WiPe− 75Mh

4W
Pe2 − 81Na

8

(

h

W
+

4

h
ln(W )

)

Wi2
]

.

(24)
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Fig. 4: Center-of-mass distribution. Flow and force in cooperation, Wi = 5/6.
Left: FENE spring model, right: Hookean spring model.
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Fig. 5: Center-of-mass distribution. Flow and force in opposition,Wi = 5/6. Left:
FENE spring model, right: Hookean spring model.
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The use of approximate hydrodynamic interaction tensors in the devel-
opment of the equations above gives rise to unrealistically large values of n
near the walls (i.e. when W → 0). These regions are thus excluded from the
corresponding integrals (see Sec. 3.2 for more details on the applicability
of the perturbation series expansion). The error has been shown negligi-
ble [9], primarily because the polymer is subject to steric wall repulsion in
the near-wall region, as discussed in Sec. 2.1.

The center-of-mass distribution functions for the FENE spring should,
however, be interpreted qualitatively. For the stiff spring used in this work
(b = 1), the neglect of Ω̂ in Eq. 2 may lead to non-negligible error as the
large spring force will yield a qualitatively different orientation distribution
function ψ.

3.6 Depletion layer scaling

The scaling behavior of the depletion layer thickness near a planar wall has
been studied in a steady shear flow (vx = γ̇y, where γ̇ is the shear rate).
A power law scaling Ld ∝ Wiα has been observed in Brownian dynamics
simulations [13, 7], with α = 2 and 2/3 in the limit of small and large Wi,
respectively. To examine the transition between the two scaling regimes,
we use an approximate constitutive equation for FENE dumbells, which has
the form [2]

Zτ p + λHτ p(1) − λH [τ p − ǫnkbTI]
D lnZ

Dt
= −ǫnkbTλH γ̇(1), (25)

where τ p is the polymer contribution to the stress tensor (with the total
stress tensor τ = −ηsγ̇ + τ p, where ηs is the solvent viscosity), γ̇ = ∇v +

[∇v]T is the rate-of-strain tensor, ǫ = b
2+b and Z = 1 + 3

b

(

ǫ− Tr(τp)
3nkbT

)

. The

material derivative and first convected derivative of a second-order tensor
τ are denoted, respectively, as D

Dtτ = ∂
∂tτ + v · ∇τ and τ (1) = D

Dtτ −
[

(∇v)T · τ + τ · (∇v)
]

. Solving Eq. 25 for the individual components of
the polymer stress tensor in steady shear and substituting the first and
second normal stress differences N1 = τxx − τyy and N2 = τyy − τzz into
Ma’s expression for the depletion layer thickness near a planar wall [13],
Ld = 9

16a
N1−N2

nkbT
, we obtain

Ld =

3b(5 + b) sinh

[

1
3arcsinh

[

3
√

3

2
(2+b)Wi

(5+b)3/2

]]2

4(2 + b)
a. (26)
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Fig. 6: Left: Ld ∝ Wiα1,2 . The deviation from the quadratic scaling (α1 = 2)
is shaded. As Wi → ∞, α2 → 2/3. b=500 (nearly Hookean spring), the dashed
lines correspond to the α1,2 scalings. Right: The transition between the power-law
regimes Ld ∝Wiα for b = 1 (bottom), 100, 200, 300, 400 and 500 (top).

For the hydrodynamic interaction parameter h∗ = 0.07, Fig. 6 shows
deviation of Ld from the quadratic scaling with increasing Wi, with the
transition between the two scaling regimes occurring at Wi ≈ 20. The
transition is steep for small values of b and becomes more gradual with the
increasing spring flexibility.

To examine the behavior of the depletion layer in plane Poiseuille flow,
we can define, in a manner similar to [13], the steady-state depletion layer
thickness Ld as the dominant length scale of the exponential in Eq. 24. Rec-
ognizing thatW−1 goes to infinity faster than linear or logarithmic functions
of W , we set

LW
d =

75Mh

4
Pe2 +

81Nah

8
Wi2

(

W ≪ h

2

)

. (27)

We thus obtain quadratic scalings LW
d ∼ Wi2 and LW

d ∼ Pe2; the former
scaling has been observed [13] in low Weissenberg number shear flow in the
vicinity of a single wall.

To provide an independent measure of Ld, we compute it as the value
of y where the center-of-mass distribution nc(y) is equal to α = 0.1% of its
maximum value at the center of the channel, i.e. n/nc = α. The dependence
of Ld on Wi, Pe and the stiffness ratio b is depicted in Fig. 7-8, with Ld

scaled by half the channel width. As expected, Fig. 7 confirms that in a slit,
Ld saturates along the centerline for largeWi and Pe, i.e. limWi,Pe→∞ Ld =
H/2. For fixed Pe we observe decrease in the power-law exponent with
increasing Wi. This decrease becomes gradually less pronounced as Pe
increases, with the depletion layer thickness becoming independent of Wi
for large Pe. Similar comments apply to the dependence onWi for fixed Pe.
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Fig. 7: Left: Ld dependence on Wi, for Pe = 10, 20 . . . 100 with b = 10 (stiff
dumbell). Right: Ld dependence on Pe for Wi = 1, 2 . . . 100 with b = 10. Solid
lines intended as a guide to the eye.

Fig. 8: Left: Ld dependence on b for Pe = 10, 20 . . . 100 with Wi = 5. Right: Ld

dependence on b for Wi = 1, 2 . . . 100 with Pe = 50. Solid lines intended as a guide
to the eye.

Fig. 8 suggests that for large strength of flow or external force, as quantified
by Wi and Pe, the difference between using a FENE spring or Hookean
spring diminishes, seeing that Ld is approaching its maximum value for the
given (Wi, Pe) pair.

To explore in greater detail the behavior near Wi ≈ 0, we approximated
W log[W ] appearing in the equation for Ld by its Taylor series expansion
around W = 1 up to the second order and solved the resulting algebraic
equation to arrive at an analytical expression valid for small Wi, which
yields an almost constant dependence on Wi, with a mild increase near
Wi = 1. Combined with the curves valid for large Wi (Fig. 7 left), we note
a sigmoidal dependence of Ld on Wi with saturation at about 90% for large
Wi.
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Fig. 9: Left: Stretch for b = 100 and Pe = 1. The curves correspond to Wi =
0.5, 1, 1.5, . . . 5. Right: Stretch for b = 100 and Wi = 1. The curves correspond
to Pe = 1, 2, 3 . . . 10.. The horizontal line corresponds to the theoretical value in
steady shear flow.

3.7 Molecular stretch and normal stress differences

The ratio of 〈Q2〉 to its equilibrium value Q0 = 〈Q2〉eq can serve as an indi-
cator of molecular stretching in a given flow. Fig. 9 depicts molecular stretch
across the channel width for different Wi and Pe. We observe the stretch is
monotonically decreasing to its minimum value at the center of the channel,
where the shear stress is zero. Comparing the stretch at the centerline of
our pressure-driven flow to the theoretical stretch for FENE dumbells in

steady-state shear flow [2] (where 〈Q2〉
Q2

0

= 3
b+5 [1 + 2b2(b+2)

3(b+5)(b+7)(b+9)Wi2]), we

find the former to be at 45% of the latter.
The stress tensor calculation may also help validate some commonly

employed approximations. While a simplified analysis of the steady-state
depletion layer thickness in uniform shear suggests [13] Ld ∝ N1−N2, where
N1 and N2 are the normal stress differences, it appears from Fig. 10 that
the implicit assumption of the difference being independent of the position is
not valid in Poiseuille flow for large Wi, Pe. It is, however, valid for steady
shear flow near a single wall, where Pe→ 0 and h→ ∞.

The computations involving ensemble averages plotted in Fig. 9 and
Fig. 10 have two limitations. First, as the distribution function tends to
infinity close to the walls (due to the above approximations), we exclude the
near-wall region y < 0.5, accounting for approx. 6% of the channel height.
Second, as the perturbation series expansion of the distribution function
converges only for small Wi, Pe [2], we restrict the ranges of Wi and Pe
accordingly.
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Fig. 10: The difference of normal stress differences N1 and N2 (scaled by nkbT )
across the channel width, with b = 100, P e = 1 and Wi = 0.5, 1, 1.5, . . . 5.

4 Stokeslet in Debye-Hückel electrolyte

In what follows, we denote the Green’s function of the Stokes equation with
a point charge and a counterion cloud as the electrophoretic Stokeslet.

4.1 Migration tensors for the electrophoretic Stokeslet

While the use of the HI tensor Ω in Eq. 2 is sufficient for a pure dielectric
medium, the presence of an electrolyte requires that all functions of Ω that
appear in the terms containing F e be replaced by the corresponding func-
tions of the electrophoretic HI tensor Ωe

ij ≡ (1 − δij)S
e
ij + Ge

ij , with the
Long-Ajdari electrophoretic Stokeslet Se and the associated wall correction
Ge. The aim of this section is to derive and evaluate these tensorial func-
tions, namely the modified forms of the dyads Ω̄, ¯̄Ω andDK , and write them
in terms of the corresponding migration tensors. These tensors are needed
to calculate the center-of-mass (n) and end-to-end (ψ) distribution functions
in the vicinity of a single wall as well as in a slit, under the influence of a
uniform electric field. The errors that arise when the electrophoretic wall
correction Ge is neglected or replaced by the wall correction to the regular
Stokeslet G are discussed in more detail in our previous work on Brownian
dynamics [8].

For small inverse Debye lengths, κ = λ−1
D , we can work with the entire

electrophoretic Stokeslet, given by [12]

Se
ij =

e−κr

4πηr

(

2

3
δij +

1

(κr)2

(

1 + κr +
(κr)2

3
− eκr

)(

δij − 3
r̂ir̂j
r2

))

, (28)

where we adopt the standard tensor notation (see e.g. [14]), r = |r̂| and
r̂ = r − r0.

17



Using Taylor series expansions for eκr and e−κr and neglecting terms of
third order and higher, we get

Se
ij = f(κr)S̄ij ,

where f(κr) = 1 − κr + 1
2(κr)

2 and S̄ij is the usual Green’s function of

the Stokes flow, 1
8πηr

(

δij +
r̂ir̂j
r2

)

, which one recovers in the limit of κ → 0,

i.e. when the electric field has been screened out entirely over the distance r.
Upon calculating the other contributions to the image system near a planar
wall [3], i.e. the potential dipole,

PDe =
1

2
[(−1)j+1∆Se

ij ]1≤i,j≤3 = f(κr) ¯PDij + h.o.t.,

and Stokeslet doublet

SDe = [(−1)j+1∂S
e
i2

∂rj
]1≤i,j≤3 = f(κr)S̄Dij + h.o.t.,

we note that the higher order terms in both PDe and SDe are of 1
rj
, with

j ≥ 3. Thus, for κ ≈ 0 and r ≫ 0 (in accordance with the previous
approximation in Taylor series), they may be neglected; the image system
is then identical to the one worked out by Ma [13] and Kekre [9], with S,
PD and SD defined as above.

In most situations of physical interest [12], only the algebraically decay-
ing part of the electrophoretic Stokeslet (Eq. 28), SE(r) = 1

4πηκ2 (
I
r3

− 3 rr
r5
),

needs to be retained. Note that this long-range contribution has, save for
the constant, the same form as the potential dipole (Fig. 11), D(r) =
4πηκ2SE(r), since an ion surrounded by its counterion cloud has a net
dipolar character. Thus, we can use the image system developed for a single
wall [14, 4], extend it to a slit geometry and compute the required functions
of Ω. The image system DW consists of a superposition of the free-space
dipole D and other degenerate singularities, namely Stokeslet quadruple
GQ and potential quadruple Q, defined in Appendix A. In analogy to the
splitting given in Eq. 3, we define the HI tensor as

Ωαβ =
1

4πηκ2
[DW (rα, rβ)− δαβD(rα − rβ)], (29)

where

DW (r, r0) = D(r̂) +
2
∑

w=1

G(R̂w) (30)
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Fig. 11: Velocity field due to a potential dipole of unit strength located at (x, y) =
(5, 5) and oriented parallel (left) and perpendicular (right) to the wall at y = 0.

and the correction due to the two walls Gij(R̂
w) =

(−1)j+1[Dij(R̂
w) + 2GQ

i22j(R̂
w)− 2 (y0 − (w − 1)H)Qi2j(R̂

w) + 2D∗
ij(R̂

w)],
(31)

where the index w loops over the walls (w = 1, 2), α, β loop over the
beads (1 ≤ α, β ≤ 2) and i, j, k, l loop over the tensor components. Further-
more, we use

R̂1 = ri − r
image
j = ri −Trj , (32)

R̂2 = R̂1 − 2Hey,

where T is a Householder reflection in the bottom wall (w = 1), T =
I− 2eyey, see Fig. 12.

The required functions of Ω are defined as

Ω̄ = Ω11 −Ω22 +Ω21 −Ω12, (33)

¯̄Ω = Ω11 −Ω22 +Ω12 −Ω21,

DK =
kbT

4
[
2

ζ
I+Ω11 +Ω22 +Ω12 +Ω21].
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Fig. 12: The vector notation used for the image system in a slit. The image of
vector ri, reflected in wall w is defined as rwi = T · ri + 2H(w − 1)ey.

4.1.1 Single wall

Assuming |q| ≪ |R̂c|, we can linearize the tensors in Eq. 33 around R̂c,
R̂c = (I−T) · rc. After rewriting R̂αβ in terms of R̂c as

R̂αβ = R̂c +
(−1)i

2
[q+ (1− 2δij)T · q], (34)

the linearization yields

Ω̄
1
=

1

2πηκ2

{

[T · q] · [∇D + 2∇GQ + 2∇D∗]− 2y (q− 4ey) · ∇Q+ 2qyQ(R̂c)
}

,

(35)

¯̄Ω1 =
1

2πηκ2

{

[−q] · [∇D + 2∇GQ + 2∇D∗ − 2y∇Q]
}

, (36)

DK
1 = D0

{

I+ ζSE(q)
}

. (37)

These functions can now be expressed in terms of third order migration
tensors,

Ω̄
1
= λ1M̄ · q, (38)

¯̄Ω1 = λ1 ¯̄M · q,
where Q = |q|, I is a unit dyad and the superscript signifies the presence
of a single wall. The elements of the constant migration tensors M̄ and ¯̄M
and the scalar function λ are tabulated in Appendix A.
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4.1.2 Slit

In a slit with height H, the condition |q| ≪ |R̂c| can no longer be satisfied
simultaneously for both walls. Linearizing instead around q = 0 [9], we
obtain

Ω̄
12

= (λ1 + λ2)M̄ · q, (39)

¯̄Ω12 = (λ1 + λ2) ¯̄M · q,
DK

12 = DK
1 −D0ω (I+ 3eyey) ,

where the superscript signifies the presence of two parallel walls and the
scalar function ω is defined in Appendix A.

4.2 Distribution function for the electrophoretic Stokeslet

To explore migration due to the separate and combined effects of flow and
electrophoretic force within the limits of analytical theory, we neglect the
terms proportional to W−n where n ≥ 6, on the same basis as discussed
in Sec. 3.4. As our primary interest is in the near-wall behavior, we also
do not include the diffusivity gradient, which we expect would slightly alter
the concentration profiles near the centerline, in a manner similar to that
observed in Fig. 2.

Analogously to Eq. 23, we obtain

∂ ln n̂(W )

∂W
=

6ME

5h
WiPe+

27MEh(h2 − 2W )

320W 4
Pe2+

81NEa(h2 − 4W )

2hW 2
Wi2,

(40)
where

ME(b) =
Γ(b 5

2
,1
)

Γ(b2,1)R3
√
π
, NE(b) =

b7,5
b5,2 b27,2

and we set the Debye length

κ−1 = Rg.
Compared to the regular Stokeslet (Sec. 3.3,3.4 and 3.5), the distribution

functions for the electrophoretic Stokeslet generally exhibit sharper transi-
tions from the boundary layer to the core region, as apparent from Fig. 13-
16, which show the concentration profiles for a chain with limited flexibility
(b = 1).

In a pure Poiseuille flow with no electric field, depicted in Fig. 13, we ob-
serve smaller depletion layer, especially for the Hookean model, and weaker
dependence on the Weissenberg number for both FENE and Hookean dumb-
ells. The distribution is approximately uniform throughout most of the
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Fig. 13: Center-of-mass distribution for differentWi. No external force, diffusivity
gradient neglected. Left: FENE spring model, right: Hookean spring model.
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Fig. 14: Center-of-mass distribution for different Pe. No imposed flow. Left:
FENE spring model, right: Hookean spring model.

cross-section. In pure electrophoresis with no imposed flow, depicted in
Fig. 14, the difference in the depletion layer thickness (when compared to
the regular Stokeslet) is even more pronounced for the Hookean model. The
FENE model again shows thinner depletion layer for moderate Pe, but the
layer does not grow as fast with Pe as it does for the regular Stokeslet,
suggesting weaker scaling with the Peclet number. For combined pressure
flow and electric field, Fig. 15 and 16 show qualitative differences between
the FENE and Hookean models, which experience stronger and weaker mi-
gration away from the walls, respectively, compared to case of the regular
Stokeslet. This is presumably due to smaller inter-bead separation distance
for stiff FENE dumbells, which are affected by stronger HIs dominant at
short distances due to the electrophoretic Stokeslet, which is associated with
the electric force. A flexible Hookean dumbell, on the other hand, will ex-
hibit larger extension; the beads will then interact primarily via regular
HIs (associated with the spring and Brownian forces), dominant at longer
distances. This difference becomes prominent only in strong migration pat-
terns, such as when the flow and external force are combined. Migration
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Fig. 15: Center-of-mass distribution. Flow and force in cooperation, Wi = 5/6.
Left: FENE spring model, right: Hookean spring model.
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Fig. 16: Center-of-mass distribution. Flow and force in opposition, Wi = 5/6.
Left: FENE spring model, right: Hookean spring model.

23



towards the wall, which arises when the electric field counteracts the pres-
sure flow and is reflected in the WiPe coupling term in Eq. 24, is enhanced
for both Hookean and FENE models, as evidenced in Fig. 16 by the shift of
the maxima in the concentration profile towards the walls.

We can conclude that qualitative differences in migration patterns and
depletion layer thickness can be attributed to qualitatively different decay
of the wall-mediated HIs due to the electrophoretic Stokeslet, with strong
dependence on the flexibility of the polymer and the salt concentration of
the solvent. We note that the above analysis of migration near solid inter-
faces in confinement is applicable to low Reynolds number flows associated
with large Schmidt number Sc = ν

D ≫ 1, where ν is kinematic viscosity. For
large Reynolds numbers, the chain will be convected away from the region
of influence of the wall-mediated HIs (both regular and electrically-induced)
by the time the velocity perturbation, reflected from the wall, can be de-
tected. This effect will be further enhanced by the finite time of momentum
transport in case of low Schmidt numbers, resulting in a negligible impact
of HI-induced migration on chain dynamics under such conditions.

A Electrophoretic migration tensors

In the vicinity of a planar wall, the singularities of the electrophoretic flow
are the same as those of the potential dipolar flow. These include degenerate
Stokeslet quadruples Dij , D

∗
ij and GQ

ijkl, which are defined as follows:

Dij =
δij
r3

− 3
xixj
r5

, (41)

GQ
ijkl =

1

r3
(δilδjm + δimδil − δijδlm)

− 1

r5
(δlmxixj + δjmxixl + δjlxixm + δimxjxl + δilxjxm + δijxlxm)

+
15

r7
(xixjxlxm), (42)

Qijl = − 3

r5
(δijxl + δilxj + δjlxi) + 15

xixjxl
r7

, (43)

D∗
ij = δj2Di2. (44)

In case of a single wall, we expand the hydrodynamic interaction tensors
Ω in Taylor series around R̂c and truncate at linear terms (assuming Q <
|R̂c|, only far-wall effects are considered), i.e.Ω(R̂c+ξ) ≈∑1

n=0
1
n! (ξ · ∇)nΩ(R̂c),

where ξαβ = R̂c +
(−1)α

2 [q+ (1− 2δαβ)T · q] (cmp Eq. 32). In case of a slit
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(two parallel planar walls), the expansion is around q = 0. The linearized
tensors can be expressed in terms of constant migration tensors M̄ and ¯̄M
(Eq. 38 and 39), whose non-zero components are listed in Table 1. The
scalar functions λw(y) and ω(y) are defined as

λw(y) = (−1)w−1 3

32πηκ2 [y − (w − 1)H]4
, for w = 1, 2; (45)

ω(y) =
3a

4κ2

(

1

y3
− 1

(y −H)3

)

. (46)

Table 1: Migration tensors. From left to right: Non-zero values of M̄ijk and ¯̄Mijk.

Value ijk indices

5 211, 233
-3 112, 332, 121, 323
-10 222

Value ijk indices

3 121, 323
-1 112, 332
-5 211, 233
-6 222
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