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Abstract

We examine DNA electrophoresis under pressure-driven flow in a
microchannel using Brownian Dynamics. In addition to hydrodynamic
interactions due to non-electric forces, we also include electrically-
induced hydrodynamic interactions, which arise due to velocity dis-
turbances generated by localized bead charges and their counter-ion
clouds. All modeled bulk interactions are supplemented with the ap-
propriate wall corrections, thus providing a uniformly valid solution
for small Debye lengths. We analyze cross-stream migration patterns
in light of competition among different types of hydrodynamic interac-
tions and show the Peclet number dependence of electrophoretic mo-
bility and radius-of-gyration tensor in moderate flows.
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1 Introduction

The dynamics of confined polymer solutions is of practical interest most
notably to biomolecular manipulation in microfluidic devices [2, 3, 25]. In-
directly, polymer solutions serve as a prototypical model for other complex
and multiphase fluids, including colloidal suspensions. A significant com-
ponent of this dynamics, with potential use in separation applications, is
cross-stream migration of a polyelectrolyte such as DNA. The migration is
a manifestation of hydrodynamic interactions among the individual sections
of the chain, mediated by the fluid and, also significantly, by the walls.
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For DNA in uniform shear flow, cross-stream migration away from the
walls has been observed both experimentally and in simulations [12] for
strongly confined systems (with characteristic channel dimension H on the
order of the polymer radius of gyration Rg). For DNA in an electrolyte
under an imposed electric field, hydrodynamic interactions are attenuated
by the counterion clouds which surround the charged macroions, but the
screening is not exponential; a residual flow from the quadrupole moment of
the charge density remains [16, 1]. While its long-range part decays faster
than the regular point-force disturbance in an uncharged solvent (regular
Stokeslet), the decay is still algebraic and thus non-negligible except for ex-
tremely small Debye lengths (or, equivalently, large salt concentrations). In
fact, recent research [27, 14] indicates non-trivial migration behavior (both
towards, and away from, the walls) in weak confinements (H ≈ 100Rg) when
the flow is coupled with an external electric field. The electrically-induced
hydrodynamic interactions have been shown to be the primary source of this
migration.

To provide a treatment of the hydrodynamic interactions more complete
than that commonly adopted [6, 14], we include both short-ranged and long-
ranged parts of the point-force solution (electrophoretic Stokeslet) of the
Stokes flow in an electrolyte. More importantly, rather than assuming that
the wall correction to the electrophoretic Stokeslet can be either neglected [6]
(correct in the limit of zero Debye length) or approximated by the wall
correction due to the regular Stokeslet [14] (correct for large Debye lengths),
we include it directly.

The layout is as follows. In Sec. 2 we give the theoretical background
on the mobility tensors associated with the nonhydrodynamic and electric
forces acting on both the polymer chain and the solvent, and discuss how
these tensors are used in Brownian dynamics. In Sec. 3 we describe the
imposed flow and external field and characterize their strengths in terms of
Weissenberg and Peclet numbers, respectively. Sec. 4 discusses the issues
and results related to the divergence of the diffusion tensor, an important
term in the Brownian dynamics equation. Sec. 5 focuses on the cross-stream
migration. First it shows, in the context of kinetic theory, how the individual
contributions to the migration arise due to different types of hydrodynamic
interactions. It then discusses the consequences of the competition between
these interactions, before presenting our migration results of Brownian dy-
namics simulations.
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2 Theoretical background

As in our previous work [10], we use a bead-spring model for a λ-phage DNA
as a prototypical polyelectrolyte with the following set of coarse-grained
parameters: contour length L = 21µm, number of springs Ns = 10, Kuhn
length bk = 0.1µm and bead radius a = 0.077µm. These parameters were
determined by Jendrejack [11] from experimental data for stained λ-phage
DNA. The solvent is an aqueous binary electrolyte with dynamic viscosity
η = 43.3 cP, absolute temperature T = 298 K and varying ionic strength
(with Debye lengths λD = 10, 102 and 103 nm for average and low salt
concentrations).

In an unconfined pure dielectric (no free charges), the velocity perturba-
tion v′

h is only due to the hydrodynamic force F h; thus v′
h = −ΩOB · F h,

where ΩOB is the Green’s function of the Stokes equation (Oseen-Burgers
Stokeslet). For N beads, the force balance between the Brownian F b, spring
F s, electric F e and hydrodynamic forces F h = −ζ [ṙ − (u+ v′

h)], yields the
velocity of the i-th bead [15],

ṙi = u(ri) +
N
∑

j=1

µij ·
(

F b
j + F s

j + F e
j

)

, (1)

where ζ = µ−1 is the Stokes friction coefficient 6πηa, u is the imposed
velocity field and the HI mobility tensor µij = δijµI + (1 − δij)Ω

OB
ij , with

δij the Kronecker delta and I the identity dyad.
In an unconfined electrolyte, additional velocity perturbations arise due

to the counter-ion cloud (CIC) which surrounds the backbone charges, v′
c =

[δijµcI+(1−δij)Ωc
ij ] ·F e, where µc is the contribution to the mobility of an

isolated bead due to CIC. The force balance with F h = −ζ [ṙ − (u+ v′
h + v′

c)]
yields

ṙi = u(ri) +
N
∑

j=1

µij ·
(

F b
j + F s

j

)

+
N
∑

j=1

µeij · F e
j , (2)

where the electric HI mobility tensor µeij = δijµ0I + (1 − δij)Ω
LA
ij and

the electrophoretic Stokeslet ΩLA ≡ ΩOB + Ωc, which is equivalent to
the Long-Ajdari form [16] . This splitting illustrates the additional con-
tribution of Ωc, which arises due to the CIC electric force density f c(r) =
−F eκ2 exp(−κr)/(4πr), as induced around a point charge Q by electric
force F e = QE in the Debye-Hückel electrolyte with Debye length λD ≡
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κ−1. The singularly-forced Stokes equation with point-charge force density
fOB = F eδ(r) and CIC force density f c can be solved by Fourier transform
to give [16]

ΩOB,c =
1

8πηr

[

aI + b
rr

r2

]

, (3)

where

a(s) =

{

1 for ΩOB,
−e−s

s2

[

es(s2 + 2)− 2(s2 + s+ 1)
]

for Ωc;
(4)

b(s) =

{

1 for ΩOB,
−e−s

s2

[

es(s2 − 6) + 2(s2 + 3s+ 3)
]

for Ωc,
(5)

δ(r) is the Dirac delta function, s = κr and r = |r|. To recover the correct
electrophoretic mobility of an isolated bead µ0, we obtain µc = µ0 −µ. The
specific choice of µ0 is discussed later in the text.

In confinement, the HI mobility tensors must include the wall corrections
ΩW and ΩW,e corresponding to the regular and electrophoretic Stokeslets,
respectively, which can be computed by solving the Stokes equation with an
appropriately chosen image system. We then obtain the dyadic components
of the 4th order mobility tensors µ and µe as

µij = δijµI +Ωij , where Ωij ≡ (1− δij)Ω
OB
ij +ΩW

ij ; (6)

µeij = δijµ0I +Ωe
ij , where Ωe

ij ≡ (1− δij)Ω
LA
ij +Ω

W,e
ij . (7)

To ensure positive-semidefiniteness of µ in our BD simulations, we use the
Rotne-Prager-Yamakawa (RPY) regularization of the Oseen-Burgers free-
space tensor; in what follows, ΩOB is thus to be interpreted as such.

To proceed with further developments, the form of Brownian force must
be specified. One option is F bdt =

√
2kbTζdw, where kb is Boltzmann

constant, T the absolute temperature, w is the Wiener process and the
prefactor follows from the fluctuation-dissipation theorem relating the sec-
ond moment of the velocity to its equilibrium value. This representation
necessitates solving a coupled system of Langevin equation for the poly-
mer and Landau-Lifshitz Navier-Stokes equation (LLNSE) for the solvent,
also known as CLEPS framework [21], and was explored in our previous
work on voltage-driven polymer translocation [10]. Another option is to
use the equation of motion, Eq. 2, to write the Fokker-Planck equation
governing the configurational distribution function ψ(t, r) and, assuming
equilibration in momentum space [4], adopt the smoothed Brownian force
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F b = −kbT ∂ lnψ
∂r

. This formulation, which is particularly useful in the ki-
netic theory of dilute polymer solutions, was employed in our previous work
on confined FENE dumbells under electric field and pressure-driven flow [9].
The Fokker-Planck equation can be recast into the stochastic differential
equation used in Brownian dynamics, where existence and uniqueness of the
solution is guaranteed if the drift and diffusion terms satisfy Lipschitz and
linear growth conditions [20]. We then obtain

dr =

[

u+
1

kbT
D · F +

∂

∂r
·D + µe · F e

]

dt+
√
2B · dw, (8)

D = B ·BT . (9)

where D and B are the diffusion and stochastic tensors discussed below,
r is the 3N vector of all bead positions, and F the 3Nb vector of all non-
hydrodynamic forces, with N the number of beads. Aside from the Marko-
Siggia spring force, these forces include a soft excluded-volume force and
steric wall repulsion and are discussed in detail in [10]. The ∇ ·D term in
Eq. 8 is the consequence of applying Îto calculus to the diffusion term in
the Fokker-Planck equation, or, equivalently, the result of including a noise
term in LLNSE. The matrix D is effectively a covariance matrix, therefore
symmetric and positive-semidefinite. The Wiener increments are Gaussian
distributed with zero mean and variance dt.

The regular HIs due to the Oseen disturbance field are included in
the 4th order 3N × 3N diffusion tensor D with component dyads Dij =
kbTµij (analogously, we can define the electrophoretic diffusion tensorDe

ij =
kbTµ

e
ij). The decomposition of the HI tensor Ω into the free-space contri-

bution and wall correction, Eq. 6, circumvents the need to solve a non-
homogeneous Stokes equation with Dirac delta forcing on the right hand
side, a computationally challenging task. Instead, having the free-space
Green’s function for the singularly-forced Stokes equation available in ana-
lytical form, the wall correction uW can be obtained by numerically solv-
ing the homogeneous Stokes equation with non-homogeneous wall boundary
conditions:

−∇p+ η∆uW = 0, ∇ · uW = 0, (10)

∂

∂n
uW = 0, p = 0 for x ∈ ΓI ∪ ΓO,

uW = −uOB,
∂

∂n
p = −ηn · (∇×∇× uW ) for x ∈ ΓW ,

(11)
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where n represents a unit normal to the surface and ΓW , ΓI and ΓO are
boundary segments corresponding to the walls, inlet and outlet of the do-
main, respectively. The wall correction uW (x,xj) to the disturbance ve-
locity due to a point force at xj ensures no-slip at the walls and generates
the corresponding correction tensor, since uW (x,xj) = ΩW (x,xj) · f(xj).
The above system of equations is solved in a rectangular channel using a
finite difference method with pressure damping, as outlined in our previous
work [10]. We choose a coordinate system where the axial channel direction
is along the x-axis and the walls are located at y = 0, H and z = 0,W , where
for simplicity we assume H = W (this assumption is nonessential and can
be removed without difficulty). At the inlet and outlet (ΓI ∪ΓO), we assume
equalized pressures and zero shear stress as the open boundary condition for
velocity. At the walls (ΓW ), we enforce no slip velocity (vW + vOB = 0)
and the curl-curl boundary condition for pressure [22], which is a convenient
reformulation of applying the normal component of the momentum equation
at the boundary along with ∂

∂n
(∇ · vW ) = 0.

The electrically-induced HIs will be strongly dependent on the choice of
the single particle mobility µ0. Each bead of radius a contains a DNA chain
segment (surrounded by counter-ions) with backbone inter-charge spacing
∆ = 0.17 nm immersed in a binary electrolyte of a specific Debye length.
The scale separation among these three length scales, which may give rise to
different electric double layer (EDL) approximations, is depicted in Fig. 1.
For κ−1 ≈ 10 nm (assuming an average ionic concentration), we have a thick
EDL within the bead (∆κ≪ 1), which justifies the use of Manning’s single
particle mobility [13, 18]

µ0 =

[

3πηls
ln(∆/λD)

+
ls

6λB

(

1

µ+
+

1

µ−

)]−1

, (12)

where ls is the contour length of the bead-contained chain segment, λB = 0.7
nm the Bjerrum length of water and µ± the cation and anion mobilities.
With 48,502 base pairs (backbone charges) in the λ-phage DNA and Ns =
10, we have ls = 0.75µm. Assuming a 400 mM Tris-Acetate solution as
a prototypical electrolyte buffer at 25 ◦C, we convert the limiting molar
ionic conductivities [23] to generalized mobilities and upon substituting into
Eq. 12, we obtain µ̂0 = ζµ0 = 0.67. The wall contribution ΩW,e is computed
numerically by the same procedure as ΩW .

Given the rapid decay of the corrections ΩW and ΩW,e in a channel [7],
we precompute them with the axial cut-off equal to two times the channel
height H. For specific field point and source point locations, (xFP ,xSP ),
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Fig. 1: Separation of length scales: bead radius a, inter-charge spacing ∆ and
Debye length κ−1. The electrostatic blob of radius κ−1 contains weakly interacting
chain segment with approximately Gaussian statistics. The effective charge of the
blob leads to electrostatic inter-blob repulsion and chain swelling. The backbone
charges are partially screened by the counter-ion cloud resulting in an effective
dipole moment p.

we then perform a set of tri-linear interpolations with the precomputed grid
values. Denoting the interpolation operator for a dyad G(xFP ,xSP ) and
interpolation nodes x as L[G;x], we have

G(xi,xSP ) = L[G(xi,xj);xj ] for j = 1, 2, . . . n,

G(xFP ,xSP ) = L[G(xi,xSP );xi] for i = 1, 2, . . .m, (13)

where m and n are the numbers of nearest grid neighbors of the field point
and source point, respectively.

The stochastic tensor B in Eq. 8 is computed by Cholesky decomposi-
tion, which requires a symmetric and positive-semidefinite D (this require-
ment is primarily dictated by the fact thatD is in effect a covariance matrix).
The use of the approximate RPY Green’s function ΩOB results, however,
in nonsymmetric D (the reciprocity relation Ωij = ΩT

ij is violated). Only

its symmetric part (or, more precisely, the symmetric part of ΩW , since the
free-space contribution is symmetric and divergence-free) is thus used in the
decomposition and in the BD equation 8 itself. The analysis of error due to
neglect of the anti-symmetric part of ΩW and its divergence is presented in
Sec. 4.
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3 Electric field and imposed flow

Using length scale L equal to channel height H, diffusive time scale τ0 =
L2/(kbT ) and thermal force scale F0 = kbT/L, the Brownian dynamics equa-
tion 8 can be non-dimensionalized, with the derived scales for the diffusion
and HI tensors D0 = kbT/ζ and Ω0 = ζ−1, respectively. With the axially
acting electric field F e = F eex, we can then write De · F e = De · PeHex,
where the Peclet number PeH = F eH

kbT
represents the strength of the electric

field (for L = a, PeH = Pe used in our previous work [9]).
The imposed flow field is a three-dimensional pressure-driven flow. The

separation-of-variables solution [24] for a rectangular channel, adapted to
our coordinate system and nondimensionalized as above yields the axial
velocity

vx(y, z) = 4vmax
[

y − y2 − 8S
]

,

S =
∞
∑

n=0

(−1)n cosh[q(z − 1/2)] cos[q(y − 1/2)]

q3 cosh[q/2]
, (14)

where q = (2n+1)π. The maximum velocity vmax can be expressed in terms
of mean shear rate βm, which in turn can be related to the Weissenberg
number of the bead-spring model, Wi, that we employed in our kinetic
theory developments [9]. Denoting

vmax =
βmτ0
2

, (15)

where βm = WiQ/λQ, the FENE time scale λQ = ζq20/(12kbT ) and the

FENE Weissenberg number WiQ =
√

q0
2bk
Wi, we obtain

βm = 6D0

√

2q30
bk
Wi, (16)

which allows us to represent the strength of the flow field in terms of the
Weissenberg number.

Using a remainder estimate for the integral convergence test, we estimate
the number of terms N to retain in Eq. 14 from the required tolerance ǫ,
ǫ =

∫∞

N
1

[(2x+1)π]3
dx = 1

4(1+2N)2π3 .

4 On the divergence of the diffusion tensor

Our implementation of the divergence term in Eq. 8 follows Fixman’s mid-
point method [26], which uses a forward finite difference formula with the
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step sizes based on the scaled Wiener increments ∆w; specifically, we have

(

∂

∂r
·D

)

dt =

√
2

2
[D(r∗)−D(r)]

[

B−1(r)
]T ·∆w, (17)

where r∗ = r +
√
2B(r) · ∆w. While such an approximation is exact for

vanishingly small time steps and convenient to use in Brownian dynamics,
the following analysis of the symmetric and anti-symmetric divergence vec-
tor fields uses as the step size a uniform grid spacing, which should provide
quantitative insight to determine whether the anti-symmetric part is negli-
gible and understanding on the contribution to the migration mechanism.

The divergence of the dyad Dij is computed as follows:

∂

∂rj
·Dij =

N
∑

j=1

3
∑

k=1

{

3
∑

l=1

∂

∂xl
Dijkl

}

ek, (18)

where N is the number of beads and the summation convention is invoked
on the left hand side. The divergence is evaluated on a uniform 3D grid of
dimensions L×H ×W using a forward difference formula

∂

∂xl
(Dij)kl ≈

Dkl(ri, rj +∆rj ⊙ el)−Dkl(ri, rj)

||∆rj ⊙ el||
, (19)

where ∆rj is a constant vector of grid spacings, (∆x,∆y,∆z), and the
symbol ⊙ stands for component-wise multiplication. This can be contrasted
with Fixman’s method where ∆r :=

√
2B(r)∆w. Since D is equal to the

HI tensor Ω up to an isotropic contribution, the divergences of both tensors
are identical. After decomposing Ω into a superposition of the free space
ΩOB and wall contributions ΩW , we note that ΩOB yields zero divergence
for both the Oseen-Burgers (O-B) and Rotne-Prager-Yamakawa tensor (R-
P-Y). Thus in the following computations we will work only with ΩW , and
more specifically, with its symmetric part, as it is the symmetrized diffusion
tensor that is used in Eq. 8.

Without loss of generality, we focus on a pair of beads on the chain and
compute the divergence of the diffusion tensor as per Eq. 18 on a finite dif-
ference grid in an axially truncated domain described in Sec. 2. We observe
how the divergence (vector field), and its magnitude (scalar field), vary with
the location of the source point, which is confined to the central cross-section
(yz plane) of the channel. We use a central difference formula in the interior
of the domain and one-sided formulas at the boundaries.
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Fig. 2: Upper left: Contours of
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∣
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∣

∂
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·D
∣

∣

∣

∣ for the source point (thick dot) at center

of the channel cross-section. Upper right: max
∣

∣

∣

∣

∂
∂r

·D
∣

∣

∣

∣ vs z0, with source point
coordinates r0 = [x0, 1/2, z0]. Bottom: The divergence field (right) and its contours
(left) for the source point near a corner. Diffusivity scaled by D0 = kbT/ζ, length
by channel height H = 10µm.

Fig. 2 shows that the magnitude of the divergence field exhibits a sym-
metric (with respect to C4 rotation) maximum near the walls for a source
point located in the center. Asymmetric maxima, also near the walls, arise
due to source points located near walls or corners. As the distance z0 of the
source point from the wall increases, the value of the near-wall maximum
decreases, reaching minimum for source points located more than H/3 from
the nearest wall.

The vector field itself shows a consistent contribution to the migration
away from the walls irrespective of the location of the source point, which
is in agreement with the analytical results that we now briefly summarize.
Specifically, the derivation of the free-space regularized RPY tensor (which
is based on the assumption of the point force being uniformly distributed
over a spherical surface) can be extended to a near-plane case; we can then
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express the wall correction ΩW for the RPY tensor in terms of the wall
corrections due to a point force, ΩW,PF [5]), and due to a potential dipole,
ΩW,PD, yielding [8]

ΩW
ij = Ω

W,PF
ij − 2a2

3
Ω
W,PD
ij . (20)

All higher-order singularities of the Stokes flow can be written in terms of the
derivatives of the Green’s functions. So also can a potential dipole be written
in terms of the Laplacian of the point-force solution, ΩW,PD

ij = −1
2∇2

iΩ
W,PF ,

where ∇i indicates derivatives with respect to ri. This reduces the problem
of finding the wall correction due to the potential dipole to differentiating a
well-established solution due to Blake [5]. However, since the addition of the
potential dipole ruins the reciprocity relation, it is a common practice [12, 8]
to symmetrize ΩW,PD, finally arriving at

ΩW
ij =

[

1 +
a2

6

(

∇2
i +∇2

j

)

]

Ω
W,PF
ij . (21)

Assuming the wall is in the z-direction, the diffusivity tensor divergence of
the i-th bead can than be evaluated according to Eq. 18, leading to the only
non-zero term being that due to self-diffusivity (i = j), in the form (cf. [8])

[

∂

∂r̂
· D̂

]

i

=

(

9

8ẑ2i
− 3

2ẑ4i

)

ez, (22)

where ez is the unit vector in the z-direction and we scaled the diffusivity
and length by D0 and a, respectively. The bracketed prefactor is positive
for ẑ ≥ 1.16, leading to migration away from the walls, in agreement with
our numerical results for a square channel.

As the anti-symmetric part of the wall correction due to the potential
dipole is effectively neglected from both the diffusion tensor D and its di-
vergence, we quantify the resulting error by computing spatial decay of the
non-zero components of the relevant dyad for a bead in contact with wall
(which yields the largest error). Fig. 3 shows that only the velocity normal
to the wall will be affected by the error and confirms rapid decay of the
error as the field point moves away from the source point in both tangen-
tial and normal directions with respect to the wall. The divergence of the
anti-symmetric part is identically zero.

Using the method described, we also computed the divergence of the
electrophoretic mobility tensor, ∂

∂r
·µe = ∂

∂r
·ΩW,e. The qualitative picture

is similar to Fig. 2, with the magnitudes of the divergence field proportional
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Fig. 3: The decays of the anti-symmetric part of the wall correction dyad due
to a potential dipole. Source point touching the wall, with unit wall normal ez.
Solid line: (z,z) component as the field point moves away from the source point in
wall-normal direction. Dashed line: (z,x) and (z,y) components as the field point
moves away from the source point in wall-tangential directions, x and y.

to κ: in the limit of κ → 0, we have ΩLA = ΩOB with the dependences
identical to those in Fig. 2. As κ increases, the Debye length decreases
and so does the magnitude of the electrophoretic diffusion tensor De; the
increased screening of electrostatic interactions thus results in a negligible
influence of the external force on the chain configuration.

5 Cross-stream migration

While cross-stream migration mechanisms have been explained in terms of
the kinetic theory of dumbells near planar walls ([12, 17, 13]), the proposed
explanations may not be always satisfactory or applicable. We now review
the theory and relate the observed phenomena to the center-of-mass flux,
whose steady-state wall-normal component predicts the migration patterns.
The predictions are qualitatively consistent with the results of Brownian
dynamics simulations presented in Sec. 6 and facilitate their interpretation.

The migration part of the flux, [jC ]mig, contains the superposition of
four migration (drift, convection) terms, given by [13, 17]

[jC ]mig = n

[

1

2
〈Ω̄ · F s〉+ 2

kbT
〈DK · F e〉 − ∂

∂rc
· 〈DK〉+ kbT

2
〈Ω̄ · ∂

∂Q
lnψ〉

]

,

(23)

12



where DK and Ω̄ are linear functions of the HI tensor Ωij and n and ψ are
the center-of-mass and bond vector distribution functions, respectively. The
competition among these terms predicts the overall migration direction, i.e.
away from the wall (AFW) or towards the wall. The linear functions of the
HI tensor Ω are defined as [17]

Ω̄ = (Ω11 −Ω22) + (Ω21 −Ω12)

¯̄Ω = (Ω11 −Ω22) + (Ω12 −Ω21)

DK =
1

4
(D11 +D22 +D21 +D12), (24)

where Ωii represent bead mobilities, Ωij represent the inter-bead HI in-
teractions and DK is the Kirkwood diffusivity averaged over the internal
coordinates.

5.1 Internally-induced HIs (IHIs due to F S)

We note that the dominant term in shear flows is the deterministic term
proportional to internal spring tension 〈Ω̄ · F S〉, where the angle brackets
denote an ensemble average with respect to the distribution function ψ (this
terms is directly proportional to the stress tensor τP [17]). The average
dumbell orientation is 45 degrees with respect to the wall, induced by the
flow. For dumbells parallel and perpendicular to the walls the migration is
AFW and towards the wall, respectively. As Ω̄ = 0 in bulk, this is a wall-
mediated hydrodynamic interaction (WHI), whose strength increases with
the spring force F S , i.e. indirectly with effective shear rate, which dictates
the amount of average stretch of the chain.

5.2 Externally-induced HIs (EHIs due to F E)

The term proportional to the external (e.g. electric) force, 〈DK · FE〉, is
dominant in electrophoresis. The average dumbell orientation is again 45
degrees with respect to the wall, however induced by WHI (due to the term
¯̄Ω ·FE appearing in the equation of motion for Q [10] rather than the flow.
The direction of migration will be determined primarily by the magnitude
and direction of the electric force.

As ¯̄Ω = 0 in bulk, but DK 6= 0, we have an interesting coupling effect in
bulk: a superimposed flow (e.g. shear) provides the required orientation of
the dumbell for the migration to take place. Without the flow, however, the
orientation is uniformly distributed and 〈DK ·FE〉 averages to zero, yielding
no net migration. This coupling is represented in the theory by the term
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proportional to the product of Wi and Pe. The main conceptual difference
from the internally-induced HIs is that here the net migration force on the
center-of-mass does not average to zero.

5.3 Diffusion-induced HIs (DHIs due to F B)

The term proportional to the Brownian force, − ∂
∂rc

· 〈DK〉, is important
only in the case of a nonuniform velocity gradient (e.g. Poiseuille flow).
While the divergence of the diffusion tensor leads to migration AFW (as
we showed in Eq. 22 in the context of Brownian dynamics), the negative
sign gives rise to migration away from the centerline (where this term is
dominant as the internally-induced HIs vanish by symmetry). We call these
primary diffusion-induced HIs.

An additional Brownian drift term, proportional to 〈Ω̄ · ∂
∂Q

lnψ〉 (or,

alternatively, ∂
∂r1

·D11 +
∂
∂r2

·D22 [12]), leads to weak migration AFW, ac-
cording to Eq. 22. This term vanishes in the kinetic theory after linearization
of Ω̄. We call these secondary diffusion-induced HIs.

Note that both internally and externally induced HIs are deterministic in
nature, as opposed to DHIs which are driven by Brownian force. Unlike bulk
HIs, wall-mediated HIs are crucial in capturing cross-migration, as demon-
strated by the Brownian dynamics simulations [12]. Table 1 summarizes the
migration phenomena observed with commonly used models. For the free
draining model, Ω̄ = 0 and D = I, yielding no IHIs and no DHIs and thus
no migration. For the bulk HI model, where we have D = I + ΩOB, Ω̄
remains zero. We thus have IHIs and secondary DHIs still absent, but the
primary DHIs are now non-zero. For the reduced model, where we prioritize
WHI at the expense of bulk HI, i.e. D = I+ΩW , Ω̄ is no longer zero; in fact,
Ω̄ = Ω11 − Ω22. DHIs are thus fully present while IHIs are weakened due
to the incomplete Ω̄. The full HI model, with the complete and dominant
IHIs accurately predicts the migration AFW.

The limitations of the kinetic theory include the failure of the dumbell
model in fast flows due to insufficient number of relaxation modes and the
failure of the linearization of the Green’s function for chains stretched beyond
the distance of the center-of-mass from the nearest wall. With the above
classificiation of HIs we now return to the Brownian dynamics of dilute
polymer solutions.
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Table 1: The effect of bulk HIs and WHIs in BD simulations on cross-stream
migration. 0 and 1 in the second column denote exclusion and inclusion of the
relevant HI terms, respectively. No external force present.

Model name [HI, WHI] observed migration

Full HIs [1,1] full
Reduced model [0,1] reduced

Bulk HIs [1,0] opposite
Free draining [0,0] none

5.4 Hydrodynamic interactions in competition

In weak confinement (channel height H = O(100Rg)), Kekre [13] observes
migration only in combined electrophoresis and Poiseuille flow, not when the
fields are applied individually. This is in agreement with the coupling effect
observed in bulk (discussed in Sec. 5.2), as the wide wall separation used
here mimics the bulk behavior. They further observe in the combined flow
a minimum in the concentration layer thickness w (defined as the width
of the region that contains 95% of the polymer concentration) versus Pe
(or WiE), which follows the minimum in the magnitude of the radius of
gyration tensor. However, it should be pointed out that the real source of
the nonmonotonic behavior is the competition between EHIs (dominant near
walls) and DHIs (dominant near centerline); we can thus expect saturation
at high Pe. Similar competition can be seen for the dependence of w on
channel height H, as observed by Jendrejack [12]. Their explanation of
the individual regions of the dependence curve appears, however, rather
controversial: as the channel width increases, the strength of the pressure-
driven flow must decrease (contrary to what is suggested); also, we assume
that increased sampling of the near-wall region due to increased chain stretch
would only be relevant for the static depletion layer, not the non-equilibrium
one being studied. In addition, HI depletion effects become unimportant as
H increases, not the other way around as proposed.

To provide a more systematic explanation for the non-monotonic de-
pendence of w on H with the maximum for small H observed in [12], it is
convenient to decouple the two superimposed effects of deterministic and
Brownian (random) HIs. The former results in monotonic increase in w
with increasing H. This is because the inner core of the fluid, where WHIs
are negligible, expands proportionally to the wall separation distance, at
the expense of the boundary layer where WHIs are dominant. We can ex-
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Fig. 4: A qualitative model of the competition between deterministic HIs (dashed)
and Brownian HIs (dotted), yielding the observed dependence upon superposition
(solid). Note the saturation at large H for deterministic HIs. w normalized by its
equilibrium value, units of H are arbitrary.

pect saturation at large H as the WHIs will have decayed below a negligible
tolerance. The impact of the latter, Brownian DHIs, on w can be gleaned
from particle suspension studies in pressure-driven flow [19]. These con-
firm flattening of the velocity profile as H increases, with the corresponding
decrease in mean shear rate and diffusivity. The flow thus becomes more ho-
mogeneous, and we can expect the divergence of the diffusion tensor to also
decrease with increasing H. The contribution of DHIs to w vs H will thus
have a decreasing character. To give a qualitative picture, we plot the con-
tributions due to deterministic and Brownian HIs as a logistic function and
decaying exponential, respectively, revealing the non-monotonic dependence
upon superposition of the two, Fig. 4.

6 Simulation results

The Brownian dynamics implementation described in Sec. 2, with wall cor-
rections due to both the regular Oseen-Burgers and the electrophoretic Long-
Ajdari HI tensors, is followed for the period of 10 Rouse relaxation times with
a time step ∆t = 10−3 (nondimensionalized by a2/D0). At the initial time,
11-bead chains in zig-zag conformation are uniformly distributed through-
out a rectangular domain with grid spacing approximately 4 beads per grid
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cell and the axial cut-off of wall-mediated HIs and electrically-induced HIs
equal to 2H (taking advantage of the mirror symmetry with respect to the
central cross-section, only half-domain is retained after pre-computation and
pre-interpolation of the HI tensors for computational efficiency). To model
moderate confinement, we choose channel height H = 10µm. Multiple re-
alizations, each with a randomly seeded sequence of pseudo-random Wiener
increments, were performed and averaged. The concentration profiles are
constructed using a Gaussian-kernel density estimator with the bandwidth
set so as to obtain smooth profiles while retaining all statistically significant
features.

The migration patterns we observe in the simulations are consistent with
the theoretical predictions. In the absence of an electric field (Pe = 0), Fig. 5
demonstrates increased migration towards the centerline with increasingWi.
The migration is purely shear-induced (IHIs) and being wall-mediated, it is
not observed in weak confinements. The degree of migration can be quanti-
fied by the concentration layer thickness w, defined as the second moment
of the center-of-mass probability density. Correspondingly, as Wi increases,
we observe a decrease in the concentration layer thickness.

As our focus is the competition between migration towards and away
from the walls, we study the combined Poiseuille flow and electric field
acting in mutual opposition, with Debye length λD = 1µm (low electrolyte
concentration, minimal screening of electrically induced HIs). Fig. 6 shows
the effect of increasing Wi with moderate electric field strength (Pe = 20).
While for Wi = 10 a bimodal distribution with two polymer concentration
maxima near the walls develops, with increasing Wi the migration towards
the walls is gradually suppressed at the expense of the migration towards
the centerline, with the latter dominating for large enoughWi. Fig. 7 shows
the effect of increasing Pe under moderate flow conditions (Wi = 10). A
similar trend is observed: for large Pe, the competition is strongly in favor
of the migration towards the centerline. Fig. 5, 6 and 7 also show the
transition between the two migration regimes under increasing electric field
strength. For moderate flow strength, we see the nonmonotonic dependence
of the maximum of the concentration profile on Pe, as the maximum is
shifted towards the walls, and back to the center, for moderate and high
Pe, respectively.

As λD decreases, the electrostatic screening of electrically-induced HIs
becomes prominent. As shown in Fig. 8, the migration effects are strongly
suppressed when the Debye length is reduced to λD = 140 nm. While weak
migration towards the wall persists, it is no longer opposed by migration
AFW at large Pe. This is further demonstrated in Fig. 9 by the concentra-
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Fig. 5: The center-of-mass probability density for non-zero Wi, with Pe = 0. As
Wi increases from 10 to 100, the concentration layer thickness w/weq decreases
from 0.87 to 0.55, where weq is the equilibrium value which corresponds to uniform
distribution.
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Fig. 6: The center-of-mass probability density for varying Wi and fixed Pe, with
the flow field and electric field in opposition. The competition between migration
towards, and away from, the wall is evident.
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Fig. 7: The center-of-mass probability density for varying Pe and fixed Wi, with
the flow field and electric field in opposition.

tion layer thickness monotonically increasing with the Peclet number and
gradually saturating. In the limit of λD → 0, the electrophoretic wall cor-
rection ΩW,e vanishes, as does the corresponding mobility tensor µe. In the
other limit of λD → ∞, we recover the regular Stokeslet hydrodynamics,
i.e. ΩW,e = ΩW .

We conclude that computational models, or equivalently theoretical pre-
dictions of the kinetic theory, that do not include the wall correction ΩW,e

to the electrophoretic Stokeslet in the mobility tensor µe (Eq. 6) will under-
estimate the effects of migration. On the other hand, given the slower de-
cay of a regular Stokeslet (and its wall correction) compared to that of an
electrophoretic Stokeslet, we may infer that models that replace the wall
correction ΩW,e due to the Long-Ajdari Stokeslet by the wall correction ΩW

due to regular Oseen-Burgers Stokeslet will over-estimate the influence of
electrically-induced HIs. The error of such approximation is proportional to
κ and vanishes for κ→ 0.

Next, we compare the results between the simulations with and without
the electrophoretic wall correction. To examine the migration for Poiseuille
flow and electric field in opposition in more detail, we plot the dependence
of the concentration layer thickness on the Peclet number for moderate flow
strength (Wi = 10) in Fig. 10. We again observe migration towards and
away from the walls for small and large electric field strengths, respectively,
as consistent with Fig. 5-7. However, when the wall correction is neglected,
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Fig. 8: The center-of-mass probability density for varying Pe and fixed Wi, with
the flow field and electric field in opposition and Debye length decreased to λD =
140 nm.
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Fig. 9: Concentration layer thickness, scaled by weq versus electric field strength
for Wi = 10 and Debye length decreased to λD = 140 nm.
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Fig. 10: Concentration layer thickness, scaled by weq versus electric field strength
for Wi = 10. Transition from the migration towards the walls to the migration
towards the centerline is evident. Electrophoretic correction: # = excluded; 2 =
included.

Fig. 11: Shape descriptors (#,2 = chain asphericity Sxx/Syy and ×,+ = the
trace of the gyration tensor Tr(S)), scaled by q2

0
, versus electric field strength for

Wi = 10. Transition between chain extension and compression in the axial direction
as Pe increases. Electrophoretic correction: #,× = excluded; 2,+ = included.
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Fig. 12: Electrophoretic mobility µe, scaled by ζ, versus electric field strength
for Wi = 10. Flow reversal occurs at Per ≈ 50, saturation occurs at Manning’s
mobility µ0ζ = 0.67. Electrophoretic correction: # = excluded; 2 = included.

Fig. 13: Concentration layer thickness (scaled by weq) versus channel height
(scaled by radius of gyration). A monotonic decrease characteristic of moderate
and weak confinements. Wi = 10, Pe = 20.

22



the absence of an important contribution to the migration AFW is immedi-
ately reflected in the overprediction of migration towards the wall at small
Pe and underprediction of migration AFW at large Pe. As demonstrated
in Fig. 11, the dependence of w closely follows that of the asphericity of
the chain in the axial direction, defined as Sxx/Syy, where S is the gyration
tensor. As the chain migrates towards the walls, the shear rate increases and
so does the axial chain extension. For large Pe, the chain experiences axial
compression in the region with small shear rate near the centerline. Again,
the effects are under-estimated when the electrophoretic wall correction is
neglected. The overall chain size, quantified by the trace of the gyration
tensor Tr(S), shows a slow and monotonic increase with Pe. Similarly, the
electrophoretic mobility µe, depicted in Fig. 12, increases steadily with the
electric field strength, undergoing a flow reversal (µE = 0) and saturating
for large Pe at Manning’s particle mobility µ0. This indicates that the wall-
mediated HIs become unimportant due to their fast decay as the chain swells
and the inter-bead distances increase. The saturation occurs at lower Pe
when the wall correction is neglected.

As evidenced in Fig. 10 and 11, when the correction is included, the
transition between the migration regimes occurs at Pet ≈ 60, which ap-
pears closely related to the flow reversal occurring at Per ≈ 50 (Fig. 12).
This value corresponds to the balance between the Weissenberg and Peclet
numbers, which yields Per =

H√
2bkq

3

0
µ0πη

.

Fig. 13 shows monotonic decrease of the concentration layer thickness
with channel height, as expected for moderate and weak confinements based
on the qualitative model in Fig. 4.
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