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Abstract

In this work we develop a semi-analytical form of the Stokes flow
Green’s function in a rectangular channel using a combination of Fourier
transform, eigenfunction expansions and a rapidly convergent represen-
tation of the Green’s function for a potential flow. The solution may
serve as a basis for further analytical study of flow disturbances and
their hydrodynamic interaction with the confining walls, with potential
use e.g. in the hydrodynamics of swimming microorganisms.
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1 Introductory remarks

In this work we derive an analytical form of the Stokeslet in a rectangular
channel using a combination of Fourier transform, eigenfunction expansions
and a rapidly convergent representation of the Green’s function for a poten-
tial flow. To the best of our knowledge, we are not aware of any previous
analytical solution to this problem. The solution may provide a basis for
further analytical study of flow singularities and their interaction with the
walls in strong confinement, with potential use e.g. in the hydrodynamics of
swimming microorganisms.

The point force that represents the disturbing action of a bead on the sol-
vent can be modeled by the Dirac delta function, giving rise to fundamental
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solutions of Stokes equation (SE), combined with the incompressibility con-
straint. While a general domain necessitates numerical solution, analytical
Green’s function (GF) can be readily obtained in free space [7] (Stokeslet)
and with some difficulty in simple domains, such as in the vicinity of a plane
wall [1], two parallel plane walls [4] and a corner [8, 9]. The analytical ap-
proach is typically [1, 4] based on the decomposition of the GF into a free
space part, a collection of judiciously placed images of the original source
points, and a complementary solution. As the GF is required to vanish at
the boundary of the domain, the image system is constructed so as to cancel
the majority of the components of the dyadic GF at the boundary, thereby
making the subsequent analysis tractable. To cancel the remaining compo-
nents, the standard SE (i.e. without Dirac delta forcing) is solved subject
to the no-slip boundary condition simplified by the image system, yielding
the complementary solution. For a single wall located at x2 = 0, the image
system consists of a set of three singularities: a Stokeslet S and two of its
derivatives, namely Stokeslet doublet SD and potential dipole PD, defined
as [6]

Sij(r) =
δij
r

+
xixj
r3

, (1)

SD
ij (r) = ±∂Si2

∂xj
= x2P

D
ij (r)±

δj2xi − δi2xj
r3

, (2)

PD
ij (r) = ± ∂

∂xj

xi
r3

= ±
(

δij
r3

− 3
xixj
r5

)

, (3)

where r = |r| and the minus sign used for the x2 direction, j = 2. In
a slit, a superposition of the two single-wall solutions often gives sufficient
approximation. A complete, yet slowly covering solution based on an infinite
array of images is also available [4].

Rather than solving the complementary SE directly, an alternative ap-
proach [8, 9] is based on the Papkovich-Neuber formalism adopted from the
linear elasticity theory, which allows the solution to the SE to be expressed
in terms of harmonic functions, thereby transforming the problem to that
of potential theory. Adopting the latter approach, we develop an analytical
form of the Stokeslet in a rectangular channel using Fourier transform and
eigenfunction expansions while building upon a rapidly convergent repre-
sentation of the potential flow GF. The results are relevant not only in the
context of Brownian dynamics studies of hydrodynamic interactions in mi-
crofluidic channels, but also in the biological study of fluid disturbances due
to slender body motion, such as beating of cilia or flagella [1, 5] represented
by lines of force singularities.
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Fig. 1: Cross-section of an infinite rectangular channel of dimensions D1 and
D2. The source point and field point are located at x0 = [d1, d2, 0] and x =
[x1, x2, x3], respectively. General motion of the source point (T ) is decomposed into
the translation parallel (T ‖) and perpendicular (T⊥) to the walls, T = T ‖ + T⊥.

2 Formulation and setup

Using Cartesian coordinates, our domain, depicted in Fig. 1, is a rectangu-
lar channel with walls at x1 = {0, D1} and x2 = {0, D2} and infinite axial
dimension x3. The source point is located at x0 = [d1, d2, 0] and we observe
the disturbance at x = [x1, x2, x3]. In the following we consider the trans-
lation of a particle parallel and perpendicular to the walls separately; the
general motion in any direction can then be obtained by superposition.

3 Motion parallel and perpendicular to the walls

We first consider particle motion parallel to the walls of the channel. The
governing Stokes equation for fluid with viscosity η and a point force acting
in the x3-direction and located at x0 is

η∇2v + δ(x− x0)e3 = ∇p, (4)

∇ · v = 0, (5)

where δ(x) is the three-dimensional Dirac delta function, e3 is the unit
vector in x3-direction and the divergenceless velocity follows from the con-
tinuity equation. By virtue of the no-slip boundary condition, the velocity
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is required to vanish on the walls,

v = 0 on the walls. (6)

The Papkovich-Neuber solution [10], based on the analogy between the
Stokes flow and Cauchy equation governing small deformations of incom-
pressible elastic materials, can be written as

v = ∇(x · φ+ ω)− 2φ, p = 2η∇ · φ, (7)

with harmonic functions ω and φ = (φ1, φ2, φ3) satisfying Laplace equations,

∇2ω = ∇2φn = 0, n = 1, 2, 3. (8)

In a star-shaped domain D (i.e. a domain for which ∃x0 ∈ D ⊂ R3 : ∀x ∈ D,
the line segment x0x ∈ D), the scalar harmonic ω is optional [10] and is
discarded for the motion parallel to the walls.

First we determine φ3, defining χ ≡ 2ηφ3, where the harmonic χ must
represent a point source located at x0 and acting in x3-direction. We thus
require that χ be governed by

∇2χ = δ(x1 − d1)δ(x2 − d2)δ(x3), (9)

χ = 0 on the walls, (10)

yielding a Green’s function associated with potential flow. In free space, we
would simply have χFS = 1/(4πr), where r2 = (x1 − d1)

2 + (x2 − d2)
2 + x23,

and φ1 = φ2 = 0. Near a corner (at the intersection of two perpendicular
plane walls), χ can be written [8] as a sum of four terms: χFS due to the
original source in free space and three corrections due to images with respect
to both walls and the origin. In a slit (two parallel planes) [4], the sum will
now contain an infinite array of periodic images in the direction normal to
the walls. In a rectangular channel, a double sum appears in the image
system due to two periodic arrays of images, placed in directions normal to
the walls [4]. We can then write χ in terms of the periodic Green’s function
G,

χ(x,x0) = G(x1 − d1, x2 − d2, x3) +G(x1 + d1, x2 + d2, x3) (11)

−G(x1 − d1, x2 + d2, x3)−G(x1 + d1, x2 − d2, x3), (12)

where G(x1, x2, x3) represents a source periodic in x1 and x2 directions with
the period 2D1 and 2D2, respectively. The periodic Green’s function is thus
governed by the corresponding Laplace equation,

∇2G =
∑

m

δ(x1 − 2D1m)
∑

n

δ(x2 − 2D2n)δ(x3), (13)

4



Fig. 2: The system of Helmholtz equations coupled through the boundary condi-
tions on a rectangle D1 ×D2.

where
∑

m denotes the sum over all integers m. The solution can be given
in several forms, equivalent mathematically but not computationally due to
different convergence properties. While the sum of images exhibits extremely
poor convergence, a rapidly convergent form is available in terms of Fourier
series [3],

G =
|x3|

8D1D2
− 1

4π

∑

m,n

′ e−(α2
n+β2

m)|x3|

dmn
ei(βmx1+αnx2), (14)

where
∑′

m,n denotes the sum over all pairs of integers (m,n) except (0, 0),

αn = nπ
D2

, βm = mπ
D1

and dmn = 2D1D2

π

(

α2
n + β2

m

)1/2
. This form is conve-

nient for later differentiation with respect to x1 and x2 and provides fast
convergence given sufficient distance between the field point and the source
point along the channel direction, which can be assumed in pressure-driven
or electrically-driven flows for moderate Wi or Pe.

To complete the solution, we are left to compute a mixed type boundary
value problem on a rectangular domain for harmonic functions φ1 and φ2,
with the no-slip boundary conditions on the walls, Fig. 2. Taking the Fourier
transform of Eq. 8 with respect to x3, i.e.

F [f ] = f̂(x1, x2, k) =
1√
2π

∫ ∞

−∞
dx3 exp(ikx3)f(x1, x2, x3), (15)
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we obtain an eigenvalue system

∂2φ̂1

∂x21
+

∂2φ̂1

∂x22
= k2φ̂1

∂2φ̂2

∂x21
+

∂2φ̂2

∂x22
= k2φ̂2, (16)

with the transformed boundary conditions (Eq. 6) given as

φ̂1 = 0, φ̂2 − x1
∂φ̂1

∂x2
= α̂3(x1) at x1 = 0,

φ̂1 = 0, φ̂2 − x1
∂φ̂1

∂x2
−D2

∂φ̂2

∂x2
= α̂4(x1) at x1 = D2,

φ̂2 = 0, φ̂1 − x2
∂φ̂2

∂x1
= α̂1(x2) at x2 = 0,

φ̂2 = 0, φ̂1 − x2
∂φ̂2

∂x1
−D1

∂φ̂1

∂x1
= α̂2(x2) at x2 = D1, (17)

where α̂i = F [αi], with α1,2 = x3
∂χ
∂x1

∣

∣

∣

∣

x1=0,D1

and α3,4 = x3
∂χ
∂x2

∣

∣

∣

∣

x2=0,D2

. The

simplified boundary conditions, Eq. 17, were derived based on the assump-
tion that at the walls xi = 0 (i = 1, 2), φn for n = 1, 2, 3 are functions of xi
only, which can be assumed if we interpret a solid wall as a limiting stream-
line and note the orthogonality between streamlines and equipotential lines
of the velocity.

Having now homogeneous boundary conditions for φ1 and φ2 in x2 and
x1 directions, respectively, we use finite Fourier transforms (eigenfunction
expansions) [2] and expand in the mentioned directions, with the basis func-
tions θin provided by the corresponding Sturm-Liouville problems. The ex-
pansions are also substituted in Eq. 17, arriving at the following expression
for φ1:

φ̂1 =
∑

n

cn(x1)θ
2
n(x2), (18)

cn(x1) = Anfn(1− x1) +Bnfn(x1), (19)

An =

∫ D2

0
dx2 θ

2
n(x2)

[

α̂1(x2) + x2
∑

m

dm(x2)Q
1
m

]

(20)

Bn =

∫ D2

0
dx2 θ

2
n(x2)

[

α̂2(x2) + x2
∑

m

dm(x2)(−1)mQ1
m +D1

∑

m

dcm
dx1

∣

∣

∣

∣

x1=D1

θ2m(x2)

]

,

(21)
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where n = 1, 2, . . . . Similarly for φ2, we have:

φ̂2 =
∑

n

dn(x2)θ
1
n(x1), (22)

dn(x2) = Mnfn(1− x2) +Nnfn(x2), (23)

Mn =

∫ D1

0
dx1 θ

1
n(x1)

[

α̂3(x1) + x1
∑

m

cm(x1)Q
2
m

]

(24)

Nn =

∫ D1

0
dx1 θ

1
n(x1)

[

α̂4(x1) + x1
∑

m

cm(x1)(−1)mQ2
m +D2

∑

m

ddm
dx2

∣

∣

∣

∣

x2=D2

θ1m(x1)

]

,

(25)

where the superscripts i = 1, 2 distinguish between equivalent formulas for

D1 andD2, respectively. We thus have Qi
n =

√

2
Di

nπ
Di

and the basis functions

θin(x) =
√

2
Di

sin nπx
Di

. The function fn has the form

fn(x) =
sinh snx

sinh sn
, (26)

where sn =
√

k2 + (nπ)2.
Eqs. 20-21 and 24-25 represent an infinite system of coupled summation

equations for An, Bn,Mn andNn, effectively coupling the Fourier coefficients
cn and dn defined in Eqs. 19 and 23, respectively. To proceed further,
the system needs to be decoupled by taking partial sums, which can be
justified by fast convergence of the eigenfunction expansions for φ̂1, φ̂2 and
φ3. Upon truncating the sums at N terms (where N is the number of Fourier
coefficients we wish to retain) and further rearrangement, we obtain a linear
system

z = Γ · z + p, (27)

where vector z contains 4N elements with zn denoting the 4 unknowns
An, Bn,Mn and Nn, n = 1 . . . N . Thus for the zn component we can write
zn =

∑N
m=1 Γnmzm + pn. The pn-component of the (4N × 1) vector p

and the Γnm submatrix of the (4N × 4N) block matrix Γ are given by,
respectively,

pn =









p12n
p22n
p31n
p41n









, (28)
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Γnm =









0 0 h12nm(1− x2) h12nm(x2)
−k1nm(1−D1) k1nm(D1) (−1)m(Γnm)13 (−1)m(Γnm)14
h21nm(1− x1) h21nm(x1) 0 0
(−1)m(Γnm)31 (−1)m(Γnm)32 −k2nm(1−D2) k2nm(D2)









,

(29)
where we define

pijn =

∫ Dj

0
θjnαidxj ,

hijnm(y) = Qi
m

∫ Dj

0
θjnxjfm(y)dxj ,

kjnm(y) = δnmDjsn cosh(ysn) cschsn, (30)

with csch(x) the hyperbolic cosecant. Upon solving Eq. 27 for z we can
compute the Fourier coefficients from Eqs. 19 and 23. Substituting the
result into the eigenfunction expansions (Eqs. 18 and 22) yields φ̂1 and φ̂2

and the inverse Fourier transforms,

f(x1, x2, x3) =
1√
2π

∫ ∞

−∞
dk exp(ikx3)f̂(x1, x2, k), (31)

then give the desired solutions φ1 and φ2.
We have thus computed the velocity due to a point force in x3 direction,

effectively recovering the third column of the dyadic Green’s function Ω for
the Stokes flow in a rectangular channel. To compute the remaining two
columns Ωi1 and Ωi2, with i = 1 . . . 3, we need to consider the motion in the
directions x1 and x2. Assuming for convenience D1 = D2 (this assumption
is nonessential), the solutions in both directions will be identical save for the
interchange of x1 and x2 variables and d1 and d2 constants below. Hence
we discuss only the translation in the negative x1 direction.

With the hope of deriving a system analogous to Eq. 16-17, we use the
full Papkovich-Neuber solution, Eq. 7, including ω. Following [8], we set
ω = −d1χ. The harmonic function φ1 can then be written in terms of the
free-space contribution χ and a correction analogous to the complementary
solution in Blake [1] and Liron [4], which we denote φ1c. We then have

φ1 = χ+ φ1c. (32)

Recognizing that a point force not acting in the only unbounded direction
x3 will yield φ3=0, we are left to solve a system identical to Eqs. 16-17 for
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φ1c and φ2, with the correction φ1c replacing the original φ1 and functions
αi, i = 1 . . . 4, modified as follows:

α1,2 = −d1
∂χ

∂x1

∣

∣

∣

∣

x1=0,D1

, α3,4 =
∂

∂x2
[(x1 − d1)χ]

∣

∣

∣

∣

x2=0,D2

. (33)

The solution method is then identical to the one used for the particle motion
parallel to the bounding walls.
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