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Vysoká škola chemicko-technologická, Praha, CZ
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Fuzzy Control of Traffic Lights
M-Estimates in Digital Signal Processing
Stabilization of MagLev Systems

Fuzzy Controll of Traffic Lights

1 Four traffic lights, eight sensors

2 Sugeno-type fuzzy inference model

Fig.: Left: Model in Simulink. Right: Vehicle Count, Cycle Time and
Green to Red Ratio under asymmetric load.
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NMR Image Filtering Using M-Estimates

1 Generalized M-Estimates (maximum likelihood): robust
2 New filter design: combine linear descending estimator with

inverse hyperbolic functions

Fig.: Left: M-Estimator. Right: Sarcoma, Filter Masks.

3 Superior SNR and MSE compared to median filter 4 / 34
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Lyapunov Stabilization of Nonlinear MagLev Systems

1 Nonlinear, open-loop unstable SISO system, 3rd order
2 Exact linearization with Lie algebra: PID regulator synthesis

based on Root Locus techniques
3 Stability: Lyapunov function found with Variable Gradient

Method

Fig.: Left: MagLev System. Right: Regulator Synthesis with Root Locus.
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Polymer model
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Introduction: HIs in confinement
Kinetic theory of non-linear dumbell in electrolyte
Brownian dynamics of polymer migration
Stokeslet in a rectangular channel

The overall picture

Elastic dumbells (rc ,Q) in Newtonian electrolyte

Continuity + eq. of motion = Fokker-Planck eq.

0 =

{
− ∂

∂Q
·D(Q) +

∂

∂Q
· ∂
∂Q

∆(Q)

}
ψ

Solve by perturbation series → distribution of orientations
ψ(Q, rc)

Form averages and let wall-normal COM flux jc vanish →
distribution of positions n(rc)

What’s new: stiffness (FENE) and wall-mediated HIs due to
counter-ion clouds
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Fokker-Planck equation for ψ

∂
∂Q · (Q̇ψ) = 0, ∂

∂rc
· (〈ṙc〉n) = 0, where 〈·〉 =

∫
·ψdQ.

Balancing Brownian, spring, electric and hydrodynamic forces:

ṙc = u +
1

8
QQ : ∇∇u +

1

2
Ω̄ · Fs +

2

kbT
DK · Fe −DK ·

∂ ln(nψ)

∂rc
,

Q̇ = Q · ∇u− 2µI · Fs − ¯̄Ω · Fe − kbT 2µI · ∂ lnψ

∂Q
,

where DK, Ω̄ and ¯̄Ω are linearized functions of the HI tensor Ωij .

Fokker-Planck equation

2kbT

ζ

∂

∂Q
· ∂
∂Q

ψ−
(
κ̂ :

∂ψ

∂Q
Q

)
+

2a

ζ
Q· ∂ψ

∂Q
+

2

ζ

[
Q

da

dQ
+ 3a

]
ψ = 0
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Introduction: HIs in confinement
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Stokeslet in a rectangular channel

Flow and force in opposition (in electrolyte)

Fig.: Center-of-mass distribution. Flow and force in opposition,
Wi = 5/6. Left: non-linear spring model, right: linear spring model.
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Introduction: HIs in confinement
Kinetic theory of non-linear dumbell in electrolyte
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Stokeslet in a rectangular channel

The overall picture

Objective

Provide a comprehensive treatment of HIs in electric field under
confinement within the framework of Brownian Dynamics.

Use full electrophoretic Stokeslet (short-ranged + long-ranged
parts)

Include the corresponding wall correction
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Model equations

ṙi = u(ri ) +
N∑
j=1

µij ·
(

Fb
j + Fs

j

)
+

N∑
j=1

µe
ij · Fe

j

Brownian dynamics:

dr =

[
u +

1

kbT
D · F +

∂

∂r
·D + µe · Fe

]
dt +

√
2B · dw,

D = B · BT .

HI tensor splitting, u = uOB + uW circumvents the need to
resolve Dirac delta function. Price is non-homogeneous BCs.

−∇p + η∆uW = 0, ∇ · uW = 0,

uW = −uOB at walls
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Center-of-mass profiles

Fig.: Flow field and electric field in opposition. Debye length λD = 1µm
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Introduction: HIs in confinement
Kinetic theory of non-linear dumbell in electrolyte
Brownian dynamics of polymer migration
Stokeslet in a rectangular channel

The overall picture

Objective

Derive an analytical form of the Stokeslet in a rectangular channel.
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Background

Fig.: Cross-section of an infinite rectangular channel of dimensions D1

and D2. The source point and field point are located at x0 = [d1, d2, 0]
and x = [x1, x2, x3], respectively. General motion of the source point (T )
is decomposed into the translation parallel (T ‖) and perpendicular (T⊥)
to the walls, T = T ‖ + T⊥.

15 / 34



VSCHT: Control Theory
FSU: Stochastic Dynamics
LAPLACE: CFD in Plasma

Introduction: HIs in confinement
Kinetic theory of non-linear dumbell in electrolyte
Brownian dynamics of polymer migration
Stokeslet in a rectangular channel

Problem formulation

η∇2v + δ(x− x0)e3 = ∇p,

∇ · v = 0,

v = 0 at walls.

Papkovich-Neuber formalism:

v = ∇(x · φ + ω)− 2φ, p = 2η∇ · φ,

with harmonic functions ω and φ = (φ1, φ2, φ3) satisfying Laplace
equations,

∇2ω = ∇2φn = 0, n = 1, 2, 3.
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Solution, Final Steps

1 Use FFT (eigenfunction expansions) with the basis functions
given by the corresponding Sturm-Liouville problems.

2 Truncate the sums at N terms to de-couple Fourier
coefficients to arrive at linear system

z = Γ · z + p,

where vector z contains 4N elements.

3 Solve for z, compute Fourier coefficients, inverse transform φ̂1

and φ̂2 to obtain the desired solutions φ1 and φ2.

17 / 34



VSCHT: Control Theory
FSU: Stochastic Dynamics
LAPLACE: CFD in Plasma

Reactor Optimization (BATIR)
CFD Nozzle Design (CPI)
Electric Discharge Modeling (EXFIDIS)

Outline

1 VSCHT: Control Theory

2 FSU: Stochastic Dynamics

3 LAPLACE: CFD in Plasma

18 / 34



VSCHT: Control Theory
FSU: Stochastic Dynamics
LAPLACE: CFD in Plasma

Reactor Optimization (BATIR)
CFD Nozzle Design (CPI)
Electric Discharge Modeling (EXFIDIS)

Modeling Objectives Achieved

Optimize the AP-DBD reactor in terms of selectivity,
deposition rate and product yield using a confining stream

Examine deposition dynamics with modified T-injection and
showerhead (limiting case of repeated confinements)

Propose an injection head design with spatially uniform flow
field of discharged gas using a CFD model

Couple 1D and 2D fluid models of plasma discharge to
examine plasma physics
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Computational Domain – 2D cross-section

Plasma source: VRF = 6 kV, f = 5 kHz, P = 1 W/cm2

Total gas flow rate Q(N2) = 5 slm

Precursor concentration cA0 = 50 ppm

Confinement strength as a dilution factor D = 1− fQ , where
fQ is fraction of gas flow rate in precursor inlet

Electrode length L/H ∈ 〈10..100), H = 1 mm
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Vector Optimization

A composite objective function β, based on a linear scalarization

β =
3∑

i=1

wi fi (x),
3∑

i=1

wi = 1, x∗ = max
x∈X

β(x), (1)

where f = (S , vN ,YD) are, respectively, the individual objective
functions, normalized to (0, 1) range and w = (wS ,wV ,wG ) is a
corresponding weight vector. The solution vectors x = (D, L) are
chosen from a set X = x : {0 ≤ D < 1, 10 ≤ L/H ≤ 100}, with the
feasible solution denoted by asterisk.
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Vector Optimization
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Fig.: For a specific weighting scheme of wS = wV = 0.4, we obtain
D∗ = 0.65 and L∗/H = 10, based on the objective function β(D, L).
T-injection.
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Optimal Solutions
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Fig.: Optimal solutions with selectivity, deposition rate and product
yield as component objective functions. Left: Optimal dilution factor
D∗ = D∗(wS ,wW ). Right: Optimal electrode length L∗ = L∗(wS ,wW ).
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Design Objective

Design Objective

Increase spatial uniformity of gas flow field injected onto the
substrate in a AP-PECVD

1 While it is desirable to maintain uniform hole density close to
the substrate, it is also beneficial to increase the linear density
of holes with the decreasing Peclet number (convective flow
strength).

2 Increasing gas residence time and turbulence inside the
injector should increase flow field homogenization by
increasing eddy diffusivity for momentum transfer.
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Injector Geometry

Fig.: Left: Inner tube with non-uniform hole distribution. Right:
Composite injector with inner tube retracted for visualization in the
direction of gas inlet. Rotation angle φ = π/2, symmetry plane far right.
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Velocity Magnitude with Representative Velocity Vectors

Fig.: Uniform velocity field along the length of the outer tube.
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Effect of hole alignment and uniformity, cont’d (vorticity)
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[phi=90 deg, shift, pipe−in−pipe], var=6.155098e+03

[phi=0 deg, no shift, pipe−in−pipe], var=2.623201e+04

[phi=0 deg, no shift, pipe], var=1.686270e+06

Fig.: ’Shift’ denotes mutual misalignment of inner tube and outer tube
holes. ’Pipe-in-pipe’ denotes injector head with auxiliary inner tube.
Reference injector denoted with red asterisks.
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Overture

Open source C++/Fortran libraries for solving PDEs on
overlapping grids

Efficient mesh generator supports complex geometries

Efficient array implementation (support parallelization)

FD/FV operators up to 8th order accuracy

Structured grids with optimized discretizations use computer
time and memory efficiently

Application: Ignition in a combustion engine
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PTP, Exfidis-Like Anode
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Electric Field

The electric potential φ is governed by

∆φ = − ρ
ε0
, (2)

with

∆ ≡ ∂2

∂x2
1

+
1

x1

∂

∂x1
+

∂2

∂x2
2

,

electric field E = −∇φ and space charge density ρ =
∑

j qjnj .

Numerical Implementation

2nd order FDM on vertex-centered grid

Banded algebraic system: direct/iterative/PETSC solvers

Coordinate singularity: L’Hopital’s rule

Dielectrics: surface charge accumul., sub-domain iterations
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Species Densities, Coordinate Transformation

For a smooth grid mapping from a Cartesian to physical space,

x = G(r), r ∈ [0, 1]× [0, 1], x ∈ R2, (3)

we transform to Cartesian space, obtaining

∂n

∂t
+

1

J

∂

∂r1
f̂1 +

1

J

∂

∂r2
f̂2 = R̂, (4)

where

f̂1 =
∂x2

∂r2
f1 −

∂x1

∂r2
f2, (5)

f̂2 =
∂x1

∂r1
f2 −

∂x2

∂r1
f1, (6)

R̂ = R − f1

x1
, (7)

with Jacobian J =
∣∣∣∂(x1,x2)
∂(r1,r2)

∣∣∣ and Γ = (f1, f2).

31 / 34



VSCHT: Control Theory
FSU: Stochastic Dynamics
LAPLACE: CFD in Plasma

Reactor Optimization (BATIR)
CFD Nozzle Design (CPI)
Electric Discharge Modeling (EXFIDIS)

Model, Practical Aspects: Computation and
Administration

Model running on our dedicated linux cluster (CentOS), total
processing power approx. 114GHz.

Code maintained through versioning software (Git) allowing
for easy collaboration

All features carefully documented (Latex, Doxygen)

Results database (MySql) and visualization (Matlab) available
through local web interface (LAMP)

Jobs submitted for computation are handled by a resource
manager and scheduler (Torque, Maui)
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Cathode-directed streamer after crossing mid-gap

Fig.: Electron density, electric field and space charge density 33 / 34
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Cathode-directed streamer, propagation profiles 1/2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

10
15

a
x
ia

l 
e

le
c
tr

o
n

 d
e

n
s
it
y
 [

c
m

−
3
]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

120

140

160

180

200

a
x
ia

l 
fi
e

ld
 [

k
V

/c
m

]

Fig.: Electron density and electric field
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