

Objectives

To develop a self-contained software framework for the simulation of a wide class of cold electrical discharges at atmospheric pressure, including positive streamers.

- A fluid model accounting for photoionization and electron energy equation is solved efficiently on overlapping, structured grids.
- The governing equations are discretized with finite-difference (FDM) and finite-volume (FVM) operators and transformed into parametric space to ease the implementation of high-resolution conservative schemes on curvilinear grids.
- Collocated grid arrangement further increases efficiency of the implementation.
- Operator splitting is used to include additional source terms, including those due to chemical reactions and/or the axi-symmetry of the domain.

Composite Grids

- Structured, overlapping grids are efficient in terms of computer time and memory while allowing meshing of complicated and/or moving geometries.
- We combined boundary-fitted curvilinear grids near boundaries with background Cartesian grids in the interior.
- Component grids are logically rectangular, defined by smooth mappings from parameter space \boldsymbol{r} (unit square, cube) to physical space \boldsymbol{x} : $\boldsymbol{x} = \boldsymbol{G}(\boldsymbol{r}), \quad \boldsymbol{r} \in [0, 1] \times [0, 1], \quad \boldsymbol{x} \in \mathbb{R}^2.$

Figure 1: Section of anode neighborhood (red grid) in point-to-plane

The electric potential ϕ is governed by

- $\rho = \sum_{j} q_{j} n_{j}.$
- solvers;
- iterations;

Extreme field, nano-second discharges in complicated geometries can be efficiently analyzed on HPC cluster using structured, composite grids with the combination of finite difference and finite volume methods.

System of *n* Helmholtz equations gives S_{ph} source

- and SP3 models);
- differential model.

Modelling Extreme Field Discharge on Overlapping Grids

Hotmar P., Caquineau H., Segur P.

Plasma and Energy Conversion Laboratory (LAPLACE CNRS, Paul Sabatier University), 118, route de Narbonne, 31062 Toulouse, France

Model Description

• Plasma chemistry: minimal, nitrogen and air. • Transport parameters (LFA): 1 Analytical formulas (literature), or **2** Look-up tables (Bolsig+) with cubic spline interpolation.

Electric Field: FDM

 $\Delta \phi = -\frac{\rho}{\epsilon},$

with electric field $E = -\nabla \phi$ and space charge density

• 2nd order FDM on vertex-centered grid;

Banded algebraic system: direct/iterative/PETSC

• Coordinate singularity: L'Hopital's rule;

• Dielectrics: surface charge accumulation, sub-domain

• Semi-implicit correction to remove dielectric relaxation time scale.

Species Densities: FVM

For a smooth grid mapping from a Cartesian to physical space we transform to Cartesian space, obtaining

$$\frac{\partial n}{\partial t} + \frac{1}{J} \frac{\partial}{\partial r_1} \hat{f}_1 + \frac{1}{J} \frac{\partial}{\partial r_2} \hat{f}_2 = \hat{R}.$$
 (2)

For cell average N over a vertex-centered grid cell i =(i, j) at time t_n ,

$$N_{i}^{n} = \frac{1}{\Delta x \Delta y} \int_{y_{j-1/2}}^{y_{j+1/2}} \int_{x_{i-1/2}}^{x_{i+1/2}} n(x, y, t_{n}) \, dx \, dy,$$

we apply 1st order operator splitting to flux terms S_F and source terms S_R , so that $N_i^{n+1} =$ $S_F(\Delta t)S_R(\Delta t)N_{\boldsymbol{i}}^n$, where

$$S_{\boldsymbol{i}}^{n+1} = S_R(\Delta t) N_{\boldsymbol{i}}^*, N_{\boldsymbol{i}}^*$$

 S_F represents fully discrete flux-differencing, thus $N_i^* =$

$$N_{i}^{n} - \frac{\Delta t}{J_{i}} \left[\frac{\hat{F}_{1,i+1/2,j} - \hat{F}_{1,i-1/2,j}}{\Delta x} + \frac{\hat{F}_{2,i,j+1/2} - \hat{F}_{2,i,j-1/2}}{\Delta y} \right]$$

with flux functions \hat{F} given by an upwind/highresolution method. S_R is implemented as an explicit Euler.

Photoionization

$$S_{j}^{2} S_{ph,j} = S_{i}, \qquad S_{ph} = f_{q} \sum_{j=1}^{n} A_{j} S_{ph,j}$$
(3)

with quenching factor f_q and emission intensity \propto ionization source $S_i = \sum_{r=1}^{n_r} \nu_{i,r} n_e$, where $r = 1 \dots n_r$.

• Equivalent to generalized Eddington approximations of the radiative transfer equation (e.g. Eddington

• Derived from Zheleznyak integral model by fitting absorption function by n exponential $(\rightarrow \lambda_i)$ and interpreting integral photoionization rate as the appropriate Green's function for the corresponding

 $N_{\mathbf{i}}^* = S_F(\Delta t) N_{\mathbf{i}}^n.$

0.83 0.83 0.83 0.67 0.67 0.67 0.50 0.50 0.50 0.33 0.1 0,17

Figure 3: Electron density, electric field and space charge density in a cathode-directed streamer (gap=1cm, V=11kV, tip radius 500 μ m

0.00

Contact Information

- Web: http://eng.fsu.edu/~hotmape/
- Email: hotmar@laplace.univ-tlse.fr

Results, continued

