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Objectives

To develop a self-contained software framework for
the simulation of a wide class of cold electrical dis-
charges at atmospheric pressure, including positive
streamers.
• A fluid model accounting for photoionization and
electron energy equation is solved efficiently on
overlapping, structured grids.

• The governing equations are discretized with
finite-difference (FDM) and finite-volume (FVM)
operators and transformed into parametric space
to ease the implementation of high-resolution
conservative schemes on curvilinear grids.

• Collocated grid arrangement further increases
efficiency of the implementation.

• Operator splitting is used to include additional
source terms, including those due to chemical
reactions and/or the axi-symmetry of the
domain.

Composite Grids

• Structured, overlapping grids are efficient in terms of
computer time and memory while allowing meshing
of complicated and/or moving geometries.

• We combined boundary-fitted curvilinear grids near
boundaries with background Cartesian grids in the
interior.

• Component grids are logically rectangular, defined
by smooth mappings from parameter space r (unit
square, cube) to physical space x:
x = G(r), r ∈ [0, 1]× [0, 1], x ∈ R2.

.

Figure 1: Section of anode neighborhood (red grid) in point-to-plane

Model Description

• Plasma chemistry: minimal, nitrogen and air.
• Transport parameters (LFA):

1 Analytical formulas (literature), or
2 Look-up tables (Bolsig+) with cubic spline interpolation.

Electric Field: FDM

The electric potential φ is governed by

∆φ = − ρ
ε0
, (1)

with electric field E = −∇φ and space charge density
ρ =

∑
j qjnj.

• 2nd order FDM on vertex-centered grid;
• Banded algebraic system: direct/iterative/PETSC
solvers;

• Coordinate singularity: L’Hopital’s rule;
• Dielectrics: surface charge accumulation, sub-domain
iterations;

• Semi-implicit correction to remove dielectric
relaxation time scale.

Species Densities: FVM

For a smooth grid mapping from a Cartesian to physical
space we transform to Cartesian space, obtaining
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For cell average N over a vertex-centered grid cell i =
(i, j) at time tn,
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we apply 1st order operator splitting to flux terms
SF and source terms SR, so that Nn+1

i =
SF (∆t)SR(∆t)Nn

i , where
Nn+1

i = SR(∆t)N∗i , N∗i = SF (∆t)Nn
i .

SF represents fully discrete flux-differencing, thus N∗i =

Nn
i −

∆t
Ji

F̂1,i+1/2,j − F̂1,i−1/2,j

∆x
+
F̂2,i,j+1/2 − F̂2,i,j−1/2
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 ,
with flux functions F̂ given by an upwind/high-
resolution method. SR is implemented as an explicit
Euler.

Extreme field, nano-second discharges in complicated geometries can be efficiently analyzed on HPC cluster using
structured, composite grids with the combination of finite difference and finite volume methods.

Photoionization

System of n Helmholtz equations gives Sph source(
−∇2 + λ2

j

)
Sph,j = Si, Sph = fq

n∑
j=1

AjSph,j (3)

with quenching factor fq and emission intensity ∝ ion-
ization source Si =

∑nr
r νi,rne, where r = 1 . . . nr.

• Equivalent to generalized Eddington approximations
of the radiative transfer equation (e.g. Eddington
and SP3 models);

• Derived from Zheleznyak integral model by fitting
absorption function by n exponential (→ λj) and
interpreting integral photoionization rate as the
appropriate Green’s function for the corresponding
differential model.

Results: Point-to-plane in air
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Figure 2: Electron density, electric field, space charge and photoion.

Results, continued

Figure 3: Electron density, electric field and space charge density in
a cathode-directed streamer (gap=1cm, V=11kV, tip radius 500 µm
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Figure 4: Streamer length, radius, space charge width and velocity
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